

Drainage Design Report

for

Residential Development

at

Hazelhatch Road, Celbridge, Co. Kildare

Job No:D1686Date:August 2022Local Authority:Kildare County CouncilRevision:PL3

Calmount Park, Ballymount, Dublin 12.

www.kavanaghburke.ie

Ulick Burke & Associates Limited. Registered in Ireland No: 233579. V.A.T. Registration No: IE 82335791

Contents:

- Introduction
 - a) Surface Water Runoff Management
 - b) Runoff Treatment Train
 - c) SUDS Devices
 - d) Foul Sewer
 - e) Watermain
- Surface Water Attenuation Calculations
- Specification/Product Information for;
 - a) Petrol Interceptor
 - b) Silt Trap
 - c) Flow Control Device
- Appendix A Storm Water Network Design
- Appendix B Blue Roof Preliminary Design
- Appendix C Foul Sewer Network Design
- Appendix D Soakaway Test Report
- Appendix E Receiving SW Network Capacity and Condition Check

SURFACE WATER RUNOFF MANAGEMENT

The surface water runoff generated from the proposed development will be routed through a series of Sustainable Urban Drainage System (SuDS) elements. These elements will promote runoff interception, detention and infiltration at source before runoff reaches the underground attenuation system. The flow control device will be installed on the outfall of the proposed site drainage system designed to drain and attenuate 1 in 100 year storm event of any duration (+30% climate change factor). Therefore, no flooding on or off the site will be caused by the runoff originating from the development in the event of storm up to 1in100 year return. Since the temporary flood storage forms a part of the overall attenuation tank volume, the maximum allowable discharge was limited to the green filed runoff rate QBAR (see calculations in the succeeding chapters) as per criterion 4.3 "River Flood Protection" chapter 6.3.4 of GDSDS. All flows and volumes for the storm water network design and the attenuation sizing were calculated with a 30% climate change factor applied to all rainfall intensities. We have accounted for the 10% urban creep of impermeable areas by including all patches of the landscaping areas in private front gardens in our impervious areas take-off. In addition, we have treated all permeable paving as impervious areas to account for urban creep and permeable paving loss of performance over time. A series of soakaway tests was conducted to determine soil infiltration factor. The soakaway test results report is appended to this report (see Appendix D). Despite of sufficient permeability, a conservative approach was taken and all permeable paving areas were deemed impervious for the SW network and attenuation calculation purpose.

The interception of the first flush runoff (capturing first 5mm or more of every rainfall event) will be provided in a series of sustainable urban drainage system devices upstream of the attenuation storage.

The subbase of the permeable surfacing, green roof planting and substrate, irrigation tree pits, bioretention areas and swales are designed to intercept storm water runoff from all hardstanding surfaces on site. The roofs on all apartment blocks (excluding lift shafts, AOVs, M&E equipment and balconies) are covered with an extensive green roof. The runoff from the roofs of all houses and creche will be directed to the subbase of the permeable paving as shown on the schematic secondary drainage drawing Ref. D1686-D2-PL3. Measured soil infiltration rate was above the threshold allowing for discharge of up to 5 times the areas of the permeable paving into the subbase of the permeable paving in accordance with CIRIA C753 SUDS Manual Table 24.6. All hardstanding surfaces in private property (around houses) will be made permeable. All runoff from the roads and footpaths will be directed to SuDS tree pits, bio-retention areas, swales or permeable paving before it will be allowed into underground storm water drainage network as demonstrated on the accompanying drainage and watermain layout DRG. REF. D1686-D1-1-PL3.

The proposed attenuation system will be equipped with a horizontal inspection row (inspection tunnel) to enable access for inspection and maintenance activities such as jetting and debris removal in the unlikely event of such debris passing through the proposed SUDS features, trapped gullies, vortex type silt trap/debris separator and the proprietary petrol interceptor. A proprietary Petrol Interceptor and Silt Trap will be provided on the inlet to the proposed attenuation. The "hydrobrake" or equivalent flow control device provided on the outfall pipe of the attenuation system is designed to control the flow to calculated green field runoff rate QBAR=4.1 l/sec as described in this report.

The excess SW runoff from the site (that was not disposed in the provided SUDS devices) will discharge at green field runoff rate to the neighbouring residential development to the north of the proposed site. Condition and capacity checks of the receiving SW pipe were performed and the results can be seen in Appendix E of this drainage report.

RUNOFF TREATMENT MANAGEMENT TRAIN

The treatment train approach was applied to the storm water network and attenuation design to ascertain that both the runoff quality and quantity are appropriately addressed. An array of techniques has been used to fulfil the requirements of each element of the treatment train:

Pollution prevention – To prevent chemicals and other pollutants from contaminating the rainfall runoff, a maintenance regime for the proposed development will be established and it will include regular sweeping of the estate roads and collection of rubbish. Waste bins provided will be watertight and will incorporate lids or will be located in designated bin storage to prevent the rainfall flushing the contaminants out of them. Proprietary silt trap and petrol interceptor will be provided on the surface water drainage network to intercept debris, silts and hydrocarbons and prevent them from entering the attenuation tank and from being discharged to the soil or receiving watercourse.

Source control – To detain and infiltrate the runoff as close as possible to the point of origin, we have included the following infiltration SUDS devices:

- Extensive green roofs
- Permeable surfacing
- Irrigation tree pits
- Swales
- Bioretention Areas
- Infiltration trenches

The above mentioned devices are explained in greater detail in the next chapter.

Site control – To deal with as much of the runoff as possible within the site, all storm water runoff will be intercepted in the Suds devices (permeable surfacing, swales, tree pits, green roofs and bioretention areas). Storm water runoff from all impervious surfacing will be routed through various SuDS devices allowing for runoff interception and disposal through infiltration. The routing of the storm water flows is demonstrated on the accompanying drainage layout Reg. Ref D1686-D1-1-PL3.

Regional control – to mimic the behaviour of the green field site and protect the receiving watercourse, the attenuation tank is designed to cater for all durations of rainfall up to 100-year return period for the purpose of minimising on-site and offsite flooding.

SUDS DEVICES

During the surface water drainage design process, a matrix of possible SUDS devices and their environmental benefits were analysed to decide on which of these elements were suitable for inclusion in the proposed development. The following is our review of these devices;

Excluded SUDS devices:

Ponds, Wetlands, Detention basins, Infiltration Basins are not suitable for the site of this size and its location and nature. The existing site topography, existing storm water outfall levels, flood modelling and proximity of the proposed development to the neighbouring properties rendered the site unsuitable for open, at grade attenuation pond or basin.

SUDS devices incorporated in the storm water network and attenuation design:

<u>Pervious paving</u> is proposed to all carparking spaces and pedestrian circulation areas throughout the development allowing storm water infiltration into underlying stone and soil. This device not only reduces the quantity of runoff but it also has a positive impact on runoff quality. Due to the shallow nature of the underlying build-up, permeable paving can be utilised even on sites with high ground water levels where other deeper infiltration devices would not work. According to CIRIA 697 SUDS Manual: "Pervious surfaces, together with their associated substructures, intercept surface water runoff and provide a pollutant treatment medium prior to discharge to receiving waters. Treatment processes that occur within the surface structure, the subsurface matrix (including soil layers where infiltration is allowed) and the geotextile layers include:

- filtration
- adsorption
- biodegradation
- sedimentation."

<u>Water butts</u> are proposed to all houses to reduce the quantity of storm water runoff, (water collected and retained from wet weather and used/released during dry period for watering plants, washing cars etc.), and to provide runoff water quality improvement (sedimentation of the particles and pollutions washed from the roof). Water butts also have the potential of reducing the water demand from the mains supply.

Extensive green roof is proposed to the roofs of the proposed apartment blocks as shown on the drainage layout submitted as part of this application. This roof type allows for storm water interception and disposal through transpiration and evaporation. In addition to quantity reduction, the green roofs will improve the quality of the runoff and will become a wildlife habitat, improve biodiversity and boost the environmental credentials of the development. According to CIRIA 679 SUDS Manual, typical green roof should attenuate storms up to a two-year return period event. Sustainable drainage studies indicate that Green Roofs reduce annual run-off from roofs by at least 50%, and more usually by 60-70%. Moreover, the rate of release following heavy rainfall will be slower thus assisting with issues relating to storm surges. Rainfall runoff from roofs can contain pollutants for example, from bird droppings; atmospheric pollution; as well as standard roof covering such as bitumen which give off a range of pollutants under heat stress, which then are carried along with the runoff. One of the roles of a sustainable urban drainage system is to remove some if not all of this pollution. Green roofs can retain and bind contaminants that fall on their surface either as dust or dissolved in rainwater. Research by (Johnston et al, 2004) found that 95% of heavy metals are removed from runoff by green roofs and nitrogen levels can be reduced.

In conjunction with the green roof approximately 1,310m² of blue roof attenuation storage is also proposed. Restrictor outlets regulate the flow from the roof thus helping to reduce the volume of attenuation required at ground level and allowing for more areas to be landscape which will further assist in storm water retention and disposal in these landscaped areas. A layout of the proposed blue roof can be seen on drawing Ref D1686-D1-1-PL3. The design calculations for the discharge from blue roof can be seen in Appendix B. A 40% climate change factor have been used in the design of the blue roof attenuation storage as per the requirements of the blue roof system manufacturers.

<u>Bioretention Areas</u> formed by providing shallow depressed vegetated areas are incorporated into planting areas where there are no underground services. These areas area designed to collect and treat surface water runoff before discharging it to the surface water drainage network through low level underdrain pipes. Bioretention areas will intercept the runoff from hardstanding surfaces and slow down the outflow to the drainage network. The runoff quality is improved by filtering it through enhanced vegetation and the underlying soil. Since the soil (filtration medium) is engineered, bioretention areas can be installed on sites with low soil permeability. Bioretention areas, while having a moderate impact on the total runoff volume reduction, have high potential to remove suspended solids, heavy metals, nutrients (phosphorous, nitrogen) and to treat fine suspended sediments and dissolved pollutants.

<u>Irrigation Tree Pits</u> are proposed to collect the runoff from the proposed access road and other hardstanding areas. The proposed tree pits will have a positive impact on the total storm water runoff reduction by allowing for runoff infiltration to sub soil. These tree pits will be provided with overflow pipes discharging excess runoff to the proposed on-site attenuation tank.

In addition to the above SuDS devices, pre-treatment components such as "Surf-Sep" or equivalent vortex debris and silt particle separator and "Klargester" or equivalent oil separator are proposed to collect sediments and pollutants and treat the surface water runoff from areas of possible hydrocarbons spills that are exposed to rainfall. All runoff from carriageways, roofs and any hardstanding areas will pass through the Surf-sep vortex debris and silt particle separator which according to manufacturer's specification has potential for capturing more than 95% of solid pollutants (see brochure attached). Housing developments are low risk in relation to hydrocarbon polluted runoff however the interception precaution will be included.

An underground surface water attenuation tank is proposed as the main runoff quantity reducing device. The attenuation facility proposed is a proprietary system formed with thermoplastic cells backfilled in specified drainage stone and wrapped in a pervious geotextile. Downstream of this tank, a flow control device will be provided which is designed to restrict the discharge off site to ensure the green field runoff rate is not exceeded. It is also important to note that the proposed surface water attenuation system incorporates an inspection row. This row of cells connected to an access manhole, is designed to provide an access for inspection and cleaning forming another line of defence against debris and suspended solids. Together with the proprietary pre-treatment devices of petrol interceptor and silt trap, good quality discharge will be provided with ease of inspection and maintenance ensuring a long efficient service life.

Rainwater harvesting systems

During the detailed design stage of the proposed development Environmental Design Partnership (M&E consulting engineers) will evaluate the storage and consumption of potable water. The general application of harvested storm water, particularly in sanitary applications, will be assessed to ensure compliance with SDCC and water authority recommendations and requirements and to achieve optimum reclamation of rainwater.

The detailed design stage calculations will include:

- Rainwater yield for the catchment area
- Predicted WC/Urinal flushing demand
- Size (litres) of the rainwater collection tank

The design calculations listed above will provide a cost/benefit analysis which will help to evaluate the suitability of the rainwater harvesting system for the proposed development.

FOUL SEWER;

The proposed foul sewer, fully separated from the proposed storm water drainage, is designed for sewage and wastewater collection from the proposed 137 No. of dwellings and creche. The entire wastewater network was designed using the hydraulic modelling computer program to calculate pipe gradients to achieve minimum self-cleansing velocities of 0.75m/s throughout the proposed network. In accordance with the BS EN 752.

The proposed foul sewer will discharge to the proposed foul pumping station. The effluent from foul pumping station will then be pumped to a new discharge manhole constructed in Simmonstown Park from where it will discharge by gravity to the existing foul sewer network in Simmonstown Park estate approximately 450m to the north of the subject site. For details refer to the attached Drainage Layout Drg. Ref. D1686-D1-1-PL3 and D1686-D1-2-PL3.

Irish Water's Confirmation of feasibility identifies foul network capacity constraints in the Celbridge area. Irish Water's Capital Investment Plan projects in the Lower Liffey Valley Catchment (Drainage Area Plan and the Primrose Hill Pumping Station Project) will provide the solutions to the capacity constraints. The Primrose Hill Pumping Station project is currently scheduled to be completed by Q4 2023. The proposed housing development is currently at planning stage and it will not require connection to services before the Q4 2023 therefore no interim connection solution is necessary.

The proposed development will discharge to an existing foul sewer in Simmonstown Park. This sewer is a part of Irish Water assets. Records of that sewer are shown on the Irish Water infrastructure map included in the appended Confirmation of Feasibility. The development will not be discharging to Hazelhatch Park foul network therefore no investigations or surveys will be necessary to determine the extent or capacity of this network. Since the survey is not necessary the client will not be entering into Project Works Service Agreement to carry out any investigations.

WATERMAIN;

The water supply to the proposed development will be provided through a new 200ø watermain connection to the existing watermain located in Shinkeen Road approx. 400m to the north of the subject site. This new 200ø watermain will replace the existing 6" AC watermain as per Irish Water's requirements set out in the Confirmation of Feasibility letter (Appendix C). A bulk water meter will be provided on the new watermain connection on site boundary. Several hydrants for firefighting and loop flushing purpose are proposed on the new watermain as detailed on the attached Watermain Layout Drg. Ref. D1686-D1-1-PL2 and D1686-D1-2-PL2.

Surface Water Attenuation Calculations

Surface Water Attenuation Calculations:

1) Storm Water Catchment

Catchment Area:	20338m ² (2.034 ha)
Landscaping	10150m ²
Roads and footpaths	4370m ²
Roof Areas	4128m ²
Carparking - permeable paving	1690m ²
Total Impermeable Areas:	10188m ²

Despite the hardstanding surfaces in car parking areas being permeable for the purpose of attenuation storage calculations all hard standing areas are deemed impervious.

2) Greenfield Runoff Rate – QBAR, (mean annual flood flow):

QBAR_{rural} (m³/sec) = 0.00108 x AREA^{0.89} x SAAR^{1.17} x SOIL^{2.17}

SAAR (298000E, 232000N): 748 mm

Soil Index:

S1 (very low runoff) S2 S3 (moderate runoff) S4 S5 (very high runoff)

Soil = $0.1(Soil_1) + 0.3(Soil_2) + 0.37(Soil_3) + 0.47(Soil_4) + 0.53(Soil_5)$ As the site is relatively small in catchment terms the soil class will be 100% Soil_2 as per online Wallingford Procedure Greenfield runoff estimation tool on www.uksuds.com

Soil Class:Soil2Runoff Potential:LowSoil Value:0.3

QBAR: As the site area is less than 50 hectares; QBAR for 50 hectares is firstly calculated, QBAR (m³/sec) = 0.00108 x AREA^{0.89} x SAAR^{1.17} x SOIL^{2.17} 0.00108 x (0.5)^{0.89} x (748)^{1.17} x (0.3)^{2.17} 98.47 l/sec 1.97 l/sec/Ha

QBAR for the smaller area (i.e. the subject site area):

According to GDSDS chapter 6.3.1.4 if the separate long term storage cannot be provided and temporary flood storage forms part of the single attenuation system, all the runoff from the site should be discharged at either a rate of 2 l/s/ha or the average annual peak flow rate QBAR, whichever is greater.

QBAR set at 2.034 ha x 2 l/s/ha = 4.1 l/s

3) Attenuation storage volume

Refer to Appendix A for detailed storm water network modelling and attenuation storage volume check with a specific Hydrobrake flow control device included in the analysis

In summary:

The interception of the first flush runoff (capturing first 5mm or more of every rainfall event) will be provided in a series of sustainable urban drainage system devices upstream of the attenuation storage.

Required Attenuation Volume: 817m³ to be provided within the attenuation system on site.

Temporary Flood Storage: The proposed attenuation storage will accommodate all rainfall events of all durations up to 1 in 100 years return. Therefore no separate flood storage is needed.

Total volume required: 817m³

Storm Water Network analysis and Attenuation Tank Size checks were performed using a computer hydraulic analysis software. The analysis did not highlight any ponding for any storm durations up to 1:100y return therefore the network and attenuation capacity calculated above are satisfactory. The results of the analysis are included in this report.

Greenfield runoff rate

estimation for sites

www.uksuds.com | Greenfield runoff tool

Calculated by:	Bartosz Kedzierski		Site Details	
Site name:	Hazelhatch		Latitude:	53.33090° N
Site location:	Celbridge		Longitude:	6.53199° W
This is an estimation in line with Environm	of the greenfield runoff rates that are used ent Agency guidance "Rainfall runoff mana	Reference:	2235963199	
SC030219 (2013), t (Defra, 2015), This in	he SuDS Manual C753 (Ciria, 2015) and the suDS manual C753 (Ciria, 2015) and the subscription on greenfield runoff rates may be	e non-statutory standards for SuDS	Date:	Aug 19 2022 11:30

the drainage of surface water runoff from sites.

Runoff estimation approach IH124

Site characteristics					Notes
Total site area (ha): 2.0	034				(1) Is $\Omega_{2,2,2} < 2.0 \ l/s/ha2$
Methodology					(1) 13 QBAR < 2.0 1/3/10.
Q _{BAR} estimation method	d: Calcı	ulate fr	om SPR a	nd SAAR	When Q_{BAR} is < 2.0 l/s/ha then limiting discharge rates are set
SPR estimation method	l: Calcu	ulate fr	om SOIL t	уре	at 2.0 l/s/ha.
Soil characteristics	Defau	llt	Edite	d	
SOIL type:	2		2		(2) Are flow rates < 5.0 l/s?
HOST class:	N/A	N/A N/A 0.3 0.3			Where flow water are less them 5.0 1/2 concept for discharges in
SPR/SPRHOST:	0.3				usually set at 5.0 l/s if blockage from vegetation and other
Hydrological charac	teristics	D	efault	Edited	materials is possible. Lower consent flow rates may be set where the blockage risk is addressed by using appropriate
SAAR (mm):		950		748	drainage elements.
Hydrological region:		12		12	(3) IS SOB/SODHOST < 0.32
Growth curve factor 1 y	ear:	0.85	5	0.85	
Growth curve factor 30	years:	2.13	3	2.13	Where groundwater levels are low enough the use of
Growth curve factor 100 years		ears: 2.61		2.61	soakaways to avoid discharge offsite would normally be preferred for disposal of surface water runoff.
Growth curve factor 200) years:	's: 2.86		2.86	

Greenfield runoff rates	Default	Edited
Q _{BAR} (I/s):	5.3	4.01
1 in 1 year (l/s):	4.5	3.41
1 in 30 years (l/s):	11.29	8.53
1 in 100 year (l/s):	13.83	10.46
1 in 200 years (l/s):	15.15	11.46

This report was produced using the greenfield runoff tool developed by HR Wallingford and available at www.uksuds.com. The use of this tool is subject to the UK SuDS terms and conditions and licence agreement, which can both be found at www.uksuds.com/termsand-conditions.htm. The outputs from this tool are estimates of greenfield runoff rates. The use of these results is the responsibility of the users of this tool. No liability will be accepted by HR Wallingford, the Environment Agency, CEH, Hydrosolutions or any other organisation for the use of this data in the design or operational characteristics of any drainage scheme.

Met Eireann Return Period Rainfall Depths for sliding Durations Irish Grid: Easting: 297870, Northing: 232160,

	Inte	rval						Years								
DURATION	6months,	lyear,	2,	З,	4,	5,	10,	20,	30,	50,	75,	100,	150,	200,	250,	500,
5 mins	2.3,	3.4,	4.0,	5.0,	5.6,	6.1,	7.9,	9.9,	11.3,	13.3,	15.1,	16.5,	18.7,	20.5,	22.0,	N/A ,
10 mins	3.2,	4.7,	5.6,	6.9,	7.8,	8.6,	11.0,	13.8,	15.8,	18.5,	21.1,	23.0,	26.1,	28.6,	30.6,	N/A ,
15 mins	3.7,	5.6,	6.6,	8.1,	9.2,	10.1,	12.9,	16.3,	18.6,	21.8,	24.8,	27.1,	30.7,	33.6,	36.0,	N/A ,
30 mins	4.9,	7.2,	8.5,	10.5,	11.8,	12.9,	16.4,	20.5,	23.2,	27.2,	30.7,	33.5,	37.8,	41.2,	44.1,	N/A ,
1 hours	6.5,	9.5,	11.1,	13.5,	15.2,	16.5,	20.8,	25.8,	29.1,	33.8,	38.1,	41.4,	46.6,	50.6,	54.0,	N/A ,
2 hours	8.6,	12.3,	14.3,	17.4,	19.4,	21.0,	26.4,	32.4,	36.4,	42.1,	47.2,	51.2,	57.3 ,	62.1,	66.1,	N/A ,
3 hours	10.2,	14.4,	16.7,	20.1,	22.5,	24.3,	30.3,	37.1,	41.6,	47.9,	53.6,	58.0,	64.8,	70.0,	74.4,	N/A ,
4 hours	11.4,	16.1,	18.6,	22.4,	24.9,	26.9,	33.4,	40.8,	45.6,	52.5,	58.6,	63.3,	70.6,	76.3,	81.0,	N/A ,
6 hours	13.4,	18.8,	21.6,	25.9,	28.8,	31.1,	38.4,	46.6,	52.0,	59.7,	66.4,	71.7,	79.7,	86.0,	91.1,	N/A ,
9 hours	15.8,	21.9,	25.2,	30.1,	33.3,	35.9,	44.1,	53.3,	59.4,	67.8,	75.3,	81.1,	90.0,	96.9,	102.6,	N/A ,
12 hours	17.7,	24.5,	28.1,	33.4,	36.9,	39.7,	48.6,	58.6,	65.2,	74.3,	82.4,	88.6,	98.2,	105.5,	111.6,	N/A ,
18 hours	20.9,	28.6,	32.7,	38.7,	42.7,	45.8,	55.9,	67.0,	74.3,	84.5,	93.4,	100.3,	110.8,	119.0,	125.7,	N/A ,
24 hours	23.5,	31.9,	36.4,	43.0,	47.4,	50.8,	61.6,	73.7,	81.6,	92.6,	102.2,	109.6,	120.8,	129.5,	136.7,	161.5,
2 days	29.4,	38.9,	43.8,	51.0,	55.7,	59.3,	70.8,	83.3,	91.4,	102.5,	112.1,	119.5,	130.6,	139.2,	146.1,	170.1,
3 days	34.2,	44.6,	49.9,	57.6,	62.6,	66.4,	78.5,	91.5,	99.8,	111.2,	121.1,	128.5,	139.8,	148.4,	155.4,	179.3,
4 days	38.6,	49.7,	55.3,	63.4,	68.7,	72.7,	85.3,	98.8,	107.4,	119.1,	129.1,	136.7,	148.2,	156.9,	164.0,	188.0,
6 days	46.3,	58.7,	64.9,	73.7,	79.4,	83.7,	97.2,	111.6,	120.6,	132.9,	143.4,	151.3,	163.1,	172.1,	179.3,	203.8,
8 days	53.2,	66.6,	73.3,	82.8,	88.9,	93.5 ,	107.8,	122.9,	132.4,	145.1,	156.0,	164.2,	176.4,	185.6,	193.0,	218.0,
10 days	59.6,	74.0,	81.1,	91.2,	97.6,	102.4,	117.4,	133.2,	143.0,	156.3,	167.5,	175.9,	188.5,	197.9,	205.5,	231.0,
12 days	65.6,	80.9,	88.4,	99.0,	105.7,	110.8,	126.4,	142.8,	153.0,	166.6,	178.2,	186.8,	199.7,	209.3,	217.1,	243.1,
16 days	76.9,	93.8,	101.9,	113.4,	120.7,	126.2,	143.0,	160.4,	171.2,	185.6,	197.7,	206.8,	220.2,	230.3,	238.4,	265.3,
20 days	87.5,	105.7,	114.5,	126.8,	134.6,	140.4,	158.2,	176.6,	187.9,	202.9,	215.6,	225.1,	239.0,	249.4,	257.7,	285.5,
25 days	100.0,	119.8,	129.3,	142.5,	150.8,	157.0,	175.9,	195.3,	207.2,	223.0,	236.3,	246.1,	260.6,	271.4,	280.1,	308.7,
NOTES:																

N/A Data not available

These values are derived from a Depth Duration Frequency (DDF) Model

For details refer to:

'Fitzgerald D. L. (2007), Estimates of Point Rainfall Frequencies, Technical Note No. 61, Met Eireann, Dublin', Available for download at www.met.ie/climate/dataproducts/Estimation-of-Point-Rainfall-Frequencies_TN61.pdf

Design Specification/Product Information for;

- a) Petrol Interceptor
- b) Silt Trap
- c) Flow Control Devices

Kingspan Klargester

SEPARATORS

A RANGE OF FUEL/OIL SEPARATORS FOR PEACE OF MIND

Kingspan. **Environmental**

Separators A RANGE OF FUEL/OIL SEPARATORS FOR PEACE OF MIND

Surface water drains normally discharge to a watercourse or indirectly into underground waters (groundwater) via a soakaway. Contamination of surface water by oil, chemicals or suspended solids can cause these discharges to have a serious impact on the receiving water.

The Environment Regulators, Environment Agency, England and Wales, SEPA, Scottish Environmental Protection Agency in Scotland and Department of Environment & Heritage in Northern Ireland, have published guidance on surface water disposal, which offers a range of means of dealing with pollution both at source and at the point of discharge from site (so called 'end of pipe' treatment). These techniques are known as 'Sustainable Drainage Systems' (SuDS).

Where run-off is draining from relatively low risk areas such as car-parks and non-operational areas, a source control approach, such as permeable surfaces or infiltration trenches, may offer a suitable means of treatment, removing the need for a separator.

Oil separators are installed on surface water drainage systems to protect receiving waters from pollution by oil, which may be present due to minor leaks from vehicles and plant, from accidental spillage.

Effluent from industrial processes and vehicle washing should normally be discharged to the foul sewer (subject to the approval of the sewerage undertaker) for further treatment at a municipal treatment works.

SEPARATOR STANDARDS AND TYPES

A British (and European) standard (EN 858-1 and 858-2) for the design and use of prefabricated oil separators has been adopted. New prefabricated separators should comply with the standard.

SEPARATOR CLASSES

The standard refers to two 'classes' of separator, based on performance under standard test conditions.

CLASS I

Designed to achieve a concentration of less than 5mg/l of oil under standard test conditions, should be used when the separator is required to remove very small oil droplets.

CLASS II

Designed to achieve a concentration of less than 100mg/l oil under standard test conditions and are suitable for dealing with discharges where a lower quality requirement applies (for example where the effluent passes to foul sewer).

Both classes can be produced as full retention or bypass separators. The oil concentration limits of 5 mg/l and 100 mg/l are only applicable under standard test conditions. It should not be expected that separators will comply with these limits when operating under field conditions.

FULL RETENTION SEPARATORS

Full retention separators treat the full flow that can be delivered by the drainage system, which is normally equivalent to the flow generated by a rainfall intensity of 65mm/hr.

On large sites, some short term flooding may be an acceptable means of limiting the flow rate and hence the size of full retention systems. Get in touch for a FREE professional site visit and a representative will contact you within 5 working days to arrange a visit.

helpingyou@klargester.com to make the right decision or call 028 302 66799

BYPASS SEPARATORS

Bypass separators fully treat all flows generated by rainfall rates of up to 6.5mm/hr. This covers over 99% of all rainfall events. Flows above this rate are allowed to bypass the separator. These separators are used when it is considered an acceptable risk not to provide full treatment for high flows, for example where the risk of a large spillage and heavy rainfall occurring at the same time is small.

FORECOURT SEPARATORS

Forecourt separators are full retention separators specified to retain on site the maximum spillage likely to occur on a petrol filling station. They are required for both safety and environmental reasons and will treat spillages occurring during vehicle refuelling and road tanker delivery. The size of the separator is increased in order to retain the possible loss of the contents of one compartment of a road tanker, which may be up to 7,600 litres.

SELECTING THE RIGHT SEPARATOR

The chart on the following page gives guidance to aid selection of the appropriate type of fuel/oil separator for use in surface water drainage systems which discharge into rivers and soakaways.

For further detailed information, please consult the Environment Agency Pollution Prevention Guideline 03 (PPG 3) 'Use and design of oil separators in surface water drainage systems' available from their website.

Klargester has a specialist team who provide technical assistance in selecting the appropriate separator for your application.

¹ You must seek prior permission from your local sewer provider before you decide which separator to install and before you make any discharge.

4 In certain circumstances, the sewer provider may require a Class 1 separator for discharges to sewer to prevent explosive atmospheres from being generated.

6 In certain circumstances, a separator may be one of the devices used in the SuDS scheme. Ask us for advice.

² You must seek prior permission from the relevant environmental body before you decide which separator to install.

³ In this case, if it is considered that there is a low risk of pollution a source control SuDS scheme may be appropriate.

⁵ Drainage from higher risk areas such as vehicle maintenance yards and goods vehicle parking areas should be connected to foul sewer in preference to surface water.

Bypass NSB RANGE

APPLICATION

Bypass separators are used when it is considered an acceptable risk not to provide full treatment, for very high flows, and are used, for example, where the risk of a large spillage and heavy rainfall occurring at the same time is small, e.g.

- Surface car parks.
- Roadways.
- Lightly contaminated commercial areas.

PERFORMANCE

Klargester were one of the first UK manufacturers to have separators tested to EN 858-1. Klargester have now added the NSB bypass range to their portfolio of certified and tested models. The NSB number denotes the maximum flow at which the separator treats liquids. The British Standards Institute (BSI) tested the required range of Klargester full retention separators and certified their performance in relation to their flow and process performance assessing the effluent qualities to the requirements of EN 858-1. Klargester bypass separator designs follow the parameters determined during the testing of the required range of bypass separators.

Each bypass separator design includes the necessary volume requirements for:

- Oil separation capacity.
- Oil storage volume.
- Silt storage capacity.
- Coalescer.

The unit is designed to treat 10% of peak flow. The calculated drainage areas served by each separator are indicated according to the formula given by PPG3 NSB = 0.0018A(m2). Flows generated by higher rainfall rates will pass through part of the separator and bypass the main separation chamber.

Class I separators are designed to achieve a concentration of 5mg/litre of oil under standard test conditions.

Class II separators are designed to achieve a concentration of 100mg/litre of oil under standard test conditions.

FEATURES

- Light and easy to install.
- Class I and Class II designs.
- Inclusive of silt storage volume.
- Fitted inlet/outlet connectors.
- Vent points within necks.
- Oil alarm system available (required by EN 858-1 and PPG3).
- Extension access shafts for deep inverts.
- Maintenance from ground level.
- GRP or rotomoulded construction (subject to model).

To specify a nominal size bypass separator, the following information is needed:-

- The calculated flow rate for the drainage area served. Our designs are based on the assumption that any interconnecting pipework fitted elsewhere on site does not impede flow into or out of the separator and that the flow is not pumped.
- The required discharge standard. This will decide whether a Class I or Class II unit is required.
- The drain invert inlet depth.
- Pipework type, size and orientation.

SIZES AND SPECIFICATIONS

UNIT Nominal Size	FLOW (I/s)	PEAK FLOW RATE (I/s)	DRAINAGE AREA (m²)	STOR Capacity Silt	AGE ((litres) OIL	UNIT LENGTH (mm)	UNIT DIA. (mm)	ACCESS SHAFT DIA. (mm)	BASE TO INLET INVERT (mm)	BASE TO OUTLET INVERT	STANDARD FALL ACROSS (mm)	MIN. INLET INVERT (mm)	STANDARD PIPEWORK DIA. (mm)
NSBP003	3	30	1670	300	45	1700	1350	600	1420	1320	100	500	160
NSBP004	4.5	45	2500	450	60	1700	1350	600	1420	1320	100	500	160
NSBP006	6	60	3335	600	90	1700	1350	600	1420	1320	100	500	160
NSBE010	10	100	5560	1000	150	2069	1220	750	1450	1350	100	700	315
NSBE015	15	150	8335	1500	225	2947	1220	750	1450	1350	100	700	315
NSBE020	20	200	11111	2000	300	3893	1220	750	1450	1350	100	700	375
NSBE025	25	250	13890	2500	375	3575	1420	750	1680	1580	100	700	375
NSBE030	30	300	16670	3000	450	4265	1420	750	1680	1580	100	700	450
NSBE040	40	400	22222	4000	600	3230	1920	600	2185	2035	150	1000	500
NSBE050	50	500	27778	5000	750	3960	1920	600	2185	2035	150	1000	600
NSBE075	75	750	41667	7500	1125	5841	1920	600	2235	2035	200	950	675
NSBE100	100	1000	55556	10000	1500	7661	1920	600	2235	2035	200	950	750
NSBE125	125	1250	69444	12500	1875	9548	1920	600	2235	2035	200	950	750

Advanceu rotomoulded construction on selected models . Compact and robust . Require less backfill . Tough, lightweight and

PROFESSIONAL INSTALLERS

Klargester Accredited Installers

Experience shows that correct installation is a prerequisite for the long-lasting and successful operation of any wastewater treatment product. This is why using an installer with the experience and expertise

to install your product is highly recommended.

Services include :

- Site survey to establish ground conditions and soil types
- Advice on system design and product selection
- Assistance on gaining environmental consents and building approvals
- Tank and drainage system installation
- Connection to discharge point and electrical networks
- Waste emptying and disposal

Discover more about the Accredited Installers and locate your local expert online.

www.klargester.com/installers

CARE & MAINTENANCE

Kingspan Environmental Services

Who better to look after your treatment plant than the people who designed and built it?

Kingspan Environmental have a dedicated service division providing maintenance for wastewater products.

Factory trained engineers are available for site visits as part of a planned maintenance contract or on a one-off call out basis.

To find out more about protecting your investment and ensuring peace of mind, call us on:

0844 846 0500

or visit us online: www.kingspanenvservice.com

COMMERCIAL WASTEWATER SOLUTIONS

- BIODISC[®], BIOTEC[™] & ENVIROSAFE HIGH PERFORMANCE SEWAGE TREATMENT SYSTEMS
- HILLMASTER PACKAGE PUMP STATIONS
- PUMPSTOR24 PUMPING SYSTEMS
- STORMWATER ATTENUATION SYSTEMS
- OIL/WATER SEPARATORS
- BELOW GROUND STORAGE TANKS
- GREASE & SILT TRAPS

NEW BUILD & RETROFIT SOLUTIONS

- BELOW GROUND RAINWATER HARVESTING SYSTEMS
- ABOVE GROUND RAINWATER HARVESTING SYSTEMS

Klargester

UK: College Road North, Aston Clinton, Aylesbury, Buckinghamshire HP22 5EW Tel: +44 (0) 1296 633000 Fax: +44 (0) 1296 633001 Scottish Office: Tel: +44 (0) 1355 248484 email: info@klargester.com

Ireland: Unit 1a, Derryboy Road, Carnbane Business Park, Newry, Co. Down BT35 6QH NI Tel : +44 (0) 28 302 66799 Fax: +44 (0) 28 302 60046 ROI Tel: 048 302 66799 Fax: 048 302 60046 email: info@klargester.ie

Visit our website www.klargester.com, or our company website www.kingspanenv.com

Certificate No. FM 563603

Certificate No. OHS 563604

In keeping with Company policy of continuing research and development and in order to offer our clients the most advanced products, Kingspan Environmental reserves the right to alter specifications and drawings without prior notice.

Specialists in Wastewater Treatment & Stormwater Management

Surface Water Treatment SUDs Protector The CDS Non Blocking screening technology is an

The CDS Non Blocking screening technology is an innovative method of liquid / solid separation for Surface Water, Combined Sewer Overflows (CSO) and Foul Sewage Systems.

- **SurfSep** for Surface Water applications
- **OverSep** for Combined Sewer Overflow applications.

The technology accomplishes high efficiency separation of settleable particulate matter and capture of floatable material.

A unique feature of the CDS Technology is it's compact design. Both the *SurfSep* and *OverSep* are available as packaged systems, which can either be installed inside pre-cast concrete chamber rings, or complete BBA Approved Polyethylene Chambers unit.

Applications

- Storm-water Treatment
- Combined Sewer Overflow Treatment
- Parking Area Run-Off Treatment
- Vehicle Service Yard Areas
- Pre-treatment for Wetlands, Ponds and Swales
- Rainwater Harvesting
- Pre-treatment for Oil Separators
- Pre-treatment for media and Ground In-filtration Systems

Rapid installation

Primary features

- **Effective**: Capturing more than 95% of solid pollutants.
- **Non-Blocking**: Unique design takes advantage of indirect filtration and properly proportioned hydraulic forces that virtually makes the unit unblockable.
- **Non-Mechanical**: The unit has no moving parts and requires no mechanical devices to support the solid separation function.
- Low Maintenance Costs: The system has no moving parts and is fabricated of durable materials.
- **Compact & Flexible**: Design and size flexibility enables the use of various configurations.
- **High Flow Effectiveness**: The technology remains highly effective across a broad spectrum of flow ranges.
- Assured Pollutant Capture: All materials captured are retained during high flow conditions.

Safe & Easy Pollutant Removal:

Extraction methods allow safe and easy removal of pollutants without manual handling.

Surface Water System

Hydraulic Analysis

In storm water applications, an analysis of the catchment in terms of its size, topography and land use will provide information for determining flow to be expected for various return periods.

The SurfSep is designed for the flow that mobilizes the gross pollutants within the catchment. Since there are variations in catchment response due to region, land use and topography, it is recommended that the selection of flow to be treated will be for return periods of between 3 months and 1 year.

Balancing the cost to the operator against the benefits to the environment

Field evaluations to determine pollutant mobilization have found that the vast majority of pollutants are mobilized in flows that are well below the design capacity' for the conveyance facility - typically known as the 'first flush'.

Therefore it is typical not to design the *SurfSep* models to process the conveyance system's maximum flow in order to achieve a very high level of pollutant removal.

The added value benefit to the operator is reduced civil costs without compromising the benefits to the environment.

How it works

Water and pollutants enter the system and are introduced tangentially inside the separation chamber forming a circular flow motion. Floatables and suspended solids are diverted to the slow moving centre of the flow. Negatively buoyant solids settle out to an undisturbed sump chamber below, while the water passes

countercurrently through the separation screen. Floatables remain at the water surface and retained within the screen.

Surface Water Treatment Systems

Hydraulic Design

Every application requires a detailed hydraulic analysis to ensure the final installation will perform to effect optimum solids separation without blocking the screen.

After the design flow has been determined, the appropriate standard model can be selected. A selection table is provided on page 7.

The Ultimate SUDs Protector

There a four principal areas of proprietary SUDs technology;

• Infiltration • Flow Control • Storage/attenuation • Treatment

SurfSeps, although a common form of treatment are unique. When installed upstream of any proprietary SUDs technology, the *SurfSep* protects the receiving SUDs from fine solids and debris that would otherwise accumulate over time rendering the SUDs non-operational, as the worst case.

SurfSeps have been successfully installed in front of;

- Soakaways
- Infiltration Trenches
- Filters
- Wetlands
- Ponds and Water Features
- Detention and Retention Systems
- Oil Separators
- Create storage storage systems

to remove fine solids and debris that would otherwise accumulate over time reducing the down stream effectiveness of downstream SUDs assets.

Various independent field trials have shown that the *SurfSep* can remove high levels of Phosphates, Heavy Metals and PolyAramatic Hydrocarbons (PAH's) from the flow.

Infiltration

SurfSeps have been successfully installed in front of ground Infiltration systems to remove grit, fine solids and debris which accumulates in and around the SUDs causing visual degradation in the short term and accumulation of silt and grits leading to reduced volume in the long term.

Studies have also shown that Heavy metals & PAH's accumulate within the SUDs over time before being released back to the environment resulting in elevated concentrations.

Detention & Retention Systems

SurfSeps have been successfully installed in front of collection and attenuation SUDs to remove grit, fine solids and debris which accumulates in the SUDs leading to potential blockage of flow regulators resulting in increased Occupational Health & Safety risk during the treatment of blockages and during the periodic cleaning operations.

Applications

- Rainwater Harvesting
- Road run off
- New Developments
- Motorways
- A / B Roads
- Local Roads
- Residential
- Industrial
- Commercial

Purpose

Removal of plastics, oil, grit, fine solids, organic and inorganic debris, from point source pollution.

Flow Control Systems

Flow Control

Flow control is often required to reduce flooding of downstream sewer networks or receiving water courses. There are a number of ways to achieve this. The Hydroslide - Float controlled, constant flow regulator, as detailed below is ideally suited to the providing an efficient and reliable means of flow control.

There are four types of standard Hydroslide flow regulators as pictured.

- I) Mini
- 2) HydroLimiter
- 3) VS Vertical Standard
- Combi self flushing, can be mounted on the dry or wet side of the flow chamber.

Most applications can be dealt with using any of the four models to suit the flow. An accuracy of +/-5% is achievable.

Typical SurfSep installation

Flow Control Technical Design

The Hydroslide regulator does not affect the flow until the flow is approaching the set discharge limit, this allows all flow (the first flush) to be discharged to the sewer. Because the flow to the sewer can be optimised at it's maximum permitted capacity the attentuation/storage capacity can be reduced over other methods of flow control, thus giving cost savings in storage provision. This is best explained by looking at a single storm event and comparing the 3 flow regulation processes as was done independantly by WRc in the report titled 'REDUCING THE COST OF STORMWATER STORAGE', Report No. PT1052, March 1995. The chart below represents 50 I/s control and up to 4m of head. The area difference between the curves being the detention volume saving.

Typically the volume saving when using a Hydroslide regulator is between 7% to 40%

Representation of flow through an orifice

Operation & Performance

Performance Criteria

Note: Screen apertures of 4.8 mm , 2.4 mm and 1.2 mm are available.

The 4.8 and 2.4 mm screens are generally used for Surface Water applications, with foul applications using either 2.4 or 1.2 mm aperture units.

Typical I.2 mm aperture Performance

- shall remove all solids with a single dimension greater than 1.2 mm and positively contain those solids until the unit is cleaned.
- shall remove and positively contain 100 percent of all neutrally buoyant particles with a single dimension greater than 1.2 mm for all flow conditions to design capacity.
- shall remove and positively contain 100 percent of all floating trash and debris with a single dimension greater than 1.2 mm for all flow conditions to the design capacity.
- shall remove a minimum of 50 percent of oil and grease (as defined as the floating portion of total hexane extractable materials) for all flow conditions to the design capacity, without the addition of absorbents.
- shall provide the following minimum particle removal efficiencies (based on a specific gravity of 2.65):
- a) 100 percent of all particles greater than 1100 microns.
- b) 95 percent of all particles greater than 550 microns.
- c) 90 percent of all particles greater than 367 microns.
- d) 20 percent of all particles greater than 200 microns.

Maintenance

SurfSep maintenance can be site and drainage area specific. The installation should be inspected periodically to assure its condition to handle anticipated runoff. If pollutant loadings are known, then a preventive maintenance schedule can be developed based on runoff volumes processed.

Since this is seldom the case we recommend;

New Installations

Check the condition of the installation after the first few events. This includes a visual inspection to ascertain that the unit is operating correctly and measuring the amount of deposition that has occurred in the unit. This may be achieved using a 'Dip Stick'.

Ongoing Operation

For the first 12 months the installations sump full volume should be inspected monthly and recorded. When the inspection indicates that the sump full volume is approaching the top of the sump (base of screen) a cleanout should be undertaken.

Cleaning Methods

- Eduction (Suction)
- Basket Removal
- Mechanical Grab

Maintenance Cycle

Minimum once per year. Depending on the pollutant load it may be necessary to maintain the installation more frequently.

The operator shall be able to devise the most efficient maintenance schedule for any particular installation over a 12 month operating cycle.

SurfSep **Dimensions**

SurfSep Dimensions (mm)

	SWI0404	SW0604	SW0606	SW0804	SW0806	SW0808	SWI010	SWI012	SWI015
А	370	370	370	370	370	370	500	500	500
В	444	815	615	810	830	810	800	800	830
С	1250	1985	1985	2080	2300	2480	2800	3000	3330
D	800	1200	1200	1500	1500	1500	2000	2000	2000
E	1112	1665	1665	1966	1966	1966	2475	2475	2475
F	400	700	700	700	700	800	1000	1000	1000
G (dia)	400	600	600	800	800	800	1000	1000	1000
Н	400	400	600	400	600	800	1000	1200	1500

Selection Table - SurfSep

Model Reference	Hydraulic Peak Flow Rate I/s	Drainage Area - Impermeable m ²	Chamber Diameter (mm)	Internal Pipe Diameter (mm)
SVVI 0404	30	2,000	900	150 / 225
SVVI 0604	70	5,000	1200	225
SWI 0606 / 01	140	10,000	1200	225 - 375
SWI 0606 / 02	200	15,000	1200	225 - 375
SVVI 0804	275	20,000	1500	300
SVVI 0806	350	25,000	1500	450
SVVI 0808	400	30,000	1500	450
SWI 1010	480	35,000	2000	450
SWI 1012	550	40,000	2000	450 / 750
SWI 1015	700	50,000	2000	450 / 750

* Proposed Peak Flow Rate for each model calculated using Rational Lloyd Davies with a rainfall intensity of 50mm/hr: For greater flows - special design / construction required.

In-Line SurfSep Units (SWI)

These units are used with in the drainage system in-line and are supplied as BBA Approved complete Polyethylene Chamber units from the selection table above.

Off-Line SurfSep Units (SWO)

These can be designed either using pre-cast concrete or specially designed Polyethylene chambers.

Model Designation

SurfSep models are firstly identified by the letters SW for Surface Water followed by a letter (**I** or **O**) representing the configuration (**I**nline or **O**ffline).

A four digit number representing the screen diameter and screen height then follows to give the standard model designation for a *SurfSep* screen for installation into

standard commercially available pre-fabricated manhole chambers i.e SWI 0806. Example: SWI 0806 designates Surface Water Inline with a separation screen dia 0.8 m and screen height of 0.6m.

Surface Water Treatment

remove grit, fine sediments and floating debris which can accumulate within surface water systems. Hydroslide flow control regulating the discharge to the outfall. The Hydroslide can be supplied for installation in an insitu constructed chamber, or as a complete unit housed within a pre-fabricated polyethylene manhole chamber.

Approved Suppliers

If you would like more information please contact:

CDS Technologies is a multi disciplined, international, company offering a comprehensive product range of; wastewater treatment technologies and processes, and stormwater management solutions for attenuation, infiltration, flow control and overflow treatment. CDS have an established network of Distributors and Representatives. Further information can be found on our website www.cdstech.com.au

* BBA - THIS CERTIFICATE RELATES TO PIPEX UNIVERSAL MANHOLES AND ACCESS CHAMBERS, WHICH ARE

MANUFACTURED FROM WELDED POLYPROPYLENE. This Certificate covers the use of the manholes and

chambers for drain and sewer applications where they are

used for maintenance to depths of 6 mtrs.

BBA

Alternatively please contact our approved supplier detailed left.

Hydro-Brake[®] Flow Control

Modelling Guide

Unit Selection Design Guide

Overview

Hydro-Brake[®] Flow Controls restrict the flow in surface/storm water or foul/combined sewer systems by inducing a vortex flow pattern in the water passing through the device, having the effect of increasing back-pressure.

Their 'hydrodynamic' rather than 'physical restriction' based operation provides flow regulation whilst maintaining larger clearances than most other types of flow control, making them less susceptible to blockage. Their unique "S"-shaped head-flow characteristic also enables them to pass greater flows at lower heads, which can enable more efficient use of upstream storage facilities.

This document provides guidance relating to the selection and use of Hydro-Brake[®] Flow Controls for use in surface/storm water and foul/combined sewer systems.

The information provided here is intended for the purposes of general guidance only - individual application requirements may differ. If in doubt, or to enquire about new product additions, please contact HRD Technologies Ltd.

Hydraulic Characteristics and Specification

Hydro-Brake[®] Flow Controls should be selected such that the duty/design flow is not exceeded at any point on the head-flow curve, see illustration right. If this is not achievable using the initially selected unit, it may be appropriate to select an alternative option (see selection guidance overleaf).

While the primary aim of a flow control is to provide a particular flow rate at a given upstream head (giving a design/duty point), it is important to note that secondary opportunities, such as potential for optimised storage use, derive from consideration of the full hydraulic characteristic. It is therefore important to ensure that the same flow control, or one confirmed to provide equivalent hydraulic performance, is implemented in any final installation.

Typical Hydro-Brake® Head Versus Flow Characteristics

To ensure correct implementation a multiple design-point specification, defining the main hydraulic features of the selected flow control, can be provided by HRD Technologies Ltd. This should include at least the following information:

- outlet size and model of Hydro-Brake[®] Flow Control
- definition of the duty/design point (head and flow)
- definition of the Flush-Flo[™] point (head and flow)
- definition of the Kick-Flo[®] point (head and flow)

To ensure that a drainage system performs as designed, it is strongly recommended that this information is reproduced on any technical specifications.

turning water around ...[®]

STH Type Hydro-Brake[®] Flow Control with BBA Approval

Now included in WinDes® W.12.6!

The new STH type Hydro-Brake[®] Flow Control range has a unique head / discharge performance curve which introduces a very important feature - the Switch-Flo[®] Point. This point illustrates the unique performance feature of the STH range which can lead to further savings in upstream storage, whilst also enabling increased inlet / outlet size to further reduce the risk of blockage.

condition.

Typical STH Head Versus Flow Characteristics

BBBA APPROVAL INSPECTION TESTING CERTIFICATE No OB/4599 STH Range of

Hydro-Brake[®] Flow Controls

The STH Hydro-Brake[®] Flow Control is the only vortex flow control available today that has been given the prestigious BBA Approval Certificate. The BBA assessment procedure entails rigorous assessment of production and manufacturing standards, and confirms that the hydraulic performance of the Hydro-Brake[®] Flow Control matches the data given to designers by HRD Technologies with their head / discharge curves.

A worked example showing the steps to model a Hydro-Brake[®] Flow Control and associated Stormcell[®] Storage System within Micro Drainage Win*Des*[®] is available on our website:

www.hrdtec.com

Take a Look at Our New Stormwater Web Resource

Engineering Nature's Way is a brand new resource for people working with Sustainable Drainage and flood management in the UK.

Kick-Flo[®] (a) - the point at which the vortex has initiated and at which the curve begins to return back to follow the orifice curve

and reach the same design point or desired head / flow

NEW Switch-Flo[®] (b) - marks the transition between the Kick-Flo[®] and Flush-Flo[™], from vortex initiation to stabilisation. This point adds a new layer of resolution to the Hydro-Brake[®] curve that has

Flush-Flo[™] (c) - the point at which the vortex begins to initiate and have a throttling effect. This point on the Hydro-Brake[®] curve is usually much nearer to the maximum design flow (Design Point), than other vortex flow controls leading to more water passing through the unit during the earlier stages of a storm, thus

reducing the amount of water that needs to be stored upstream.

implications to upstream storage savings.

The site provides an opportunity to share news, opinion, information and best practice for people working in local and central Government; developers, consulting engineers and contractors. Do you have something to share? We would be delighted to receive your contributions.

turning water around ...[®]

This information is for guidance only and not intended to form part of a contract. HRD Technologies Ltd pursues a policy of continual development and reserves the right to amend specifications without prior notice. Equipment is patented in countries throughout the world.

HRD Technologies Ltd • Tootenhill House • Rathcoole • Co. Dublin • Ireland Tel: +353 (0) 1 4013964 • Fax: +353 (0) 1 4013978 • www.hrdtec.com *HRD Technologies Ltd is a subsidiary of Hydro International plc*

Appendix A – Storm Water Network Design

Kava	NAG F	H BUF	RKE	Kavanagh E Consulting	Burke Enginee	rs		File: D Netwo Bartos 17/08/	1686 ork: S z Keo /2022	5 D1 Draii 5W dzierski 2	nage and	d W P	age 1		
						Des	sign S	<u>ettings</u>							
	Rair Reti Ac	nfall Met urn Peric dditional	hodolog od (years Flow (%	y FSR) 2) 20			Ma	aximum	Tim M	e of Cono Iaximum Minimu	centratio Rainfall Im Veloo	on (min (mm/h city (m/	is) 30.0 ir) 50.0 ′s) 1.00	0	
		FS	SR Regio	n Scotlan	id and Ire	eland			41		Connect	tion Typ	be Leve	l Soffits	
		IVI5	-60 (mm Ratio-F) 16.500 R 0.278				N	/IININ P	num Bac Preferred	Cover D	eight (r)enth (r	n) 0.20 n) 1.20	0	
			C\	0.750					Incl	ude Inter	rmediate	e Grour	nd √	•	
	Tin	ne of Ent	ry (mins) 5.00				Enfo	orce	best prac	ctice des	sign rule	es x		
							Nod	<u>les</u>							
				Name	Area	T of E	E C	over	Dia	meter	Depth				
					(ha)	(mins	;) L	.evel	(n	nm)	(m)				
				S\\\/1	0 102	5.00	0 56	(m) 6 740		1200	1 090				
				SW1	0.102	5.00	56	6.680		1200	1.225				
				SW3	0.168	5.0	0 56	6.700		1200	1.100				
				SW4	0.165	5.00	0 56	6.750		1200	1.470				
				SW5	0.057	5.0		6.700		1200	1.060				
				5000	0.123	5.00	0 50	0.820		1200	1.320				
				SW7			56	6.370		1200	1.260				
				SW8	0.094	5.0	0 56	6.380		1200	1.285				
				SW9	0.059	5.00	0 56	6.430		1200	1.390				
				SW10 SW11	0.305		56	6.200		1200	1.408				
				SW12		5.0	0 56	6.200		1200	1.410				
				SW13			56	6.000		1200	1.300				
				T3		5.00	0 56	6.700			1.200				
				12	0.017	5.00	56 0 70	b.700		1200	1.200				
				C2	0.017	5.0	0 70	0.000		1200	1.425				
				C1	0.032	5.0	0 70	0.000		1200	1.425				
				B1	0.066	5.0	0 70	0.000		1200	1.425				
				A1	0.041	5.0	0 70	0.000		1200	1.425				
				A2	0.020	5.0	070	0.000		1200	1.425				
				73 T1	0.008	5.0	0 56	6.700		1200	1.425				
							Lin	ks							
	Name	115	DS	Longth	ks (mm)/ 119	 5 II			Fall	Slone	Dia	TofC	Rain	
	Name	Node	Node	(m)	n n	,, 0. (r	n)	(m)		(m)	(1:X)	(mm)	(mins)	(mm/hr)	
	1.007	SW10	SW11	22.402	0.6	00 54.	920	54.87	0	0.050	448.0	450	9.30	38.5	
	1.006	SW9	SW10	53.788	0.6	00 55.	040	54.92	0	0.120	448.2	450	8.91	39.2	
	7.000	C1	SW10	18.676	0.6	00 68.	575	55.00	01	L3.575	1.4	225	5.03	49.8	
	9.000	C3	SW10	8.058	0.60	00 68.	575	55.000	0 1	13.575	0.6	225	5.01	49.9	
			Name	Vel (m/s)	Cap (I/s)	Flow (I/s)	US Dept (m)	th De (r	DS pth n)	Σ Area (ha)	Σ Ado Inflov (I/s)	d Pr v Dep (m	ro pth m)		
			1.007	0.954	151.7	120.1	0.86	50 0.	880	0.960	0.	0 3	304		
			1.006	0.954	151.7	115.1	0.94	10 0.3	860	0.902	0.	02	294		
			7.000 9.000	11.242 17 122	447.0 680 8	5.1 15	1.20	JU 1.0 00 1.0	005	0.032	0.	0 0	1/ 7		
			2.000	±/.±ćć	500.0	1.5	1.20	1.		5.005	0.	-			
				Flow + v10	1 Convrie		288-2	022 Cai		vav Techn		Itd			

KAVANAGH BURKE				Kavanagh E Consulting	3urke Engineers	File: D1686 D1 Drainage and W Network: SW Bartosz Kedzierski 17/08/2022				age 2			
						<u>Lin</u>	<u>ks</u>						
Na	me	US Node	DS Node	Length e (m)	ks (mm) / n	US IL (m)	DS IL (m)	Fall (m)	Slope (1:X)	Dia (mm)	T of C (mins)	Rain (mm/hr)	
8.0	00	C2	SW10	9.519	0.600	68.575	55.000	13.575	0.7	225	5.01	49.8	
1.00	05	SW8	SW9	23.005	0.600	55.095	55.040	0.055	418.3	450	7.97	41.3	
1.00	04	SW7	SW8	5.164	0.600	55.110	55.095	0.015	344.3	450	7.58	42.2	
1.00	03	SW4	SW7	75.360	0.600	55.280	55.110	0.170	443.3	450	7.51	42.4	
6.0	02	SW6	SW7	65.456	0.600	55.500	55.260	0.240	272.7	300	6.77	44.3	
6.0	01	SW5	SW6	34.804	0.600	55.640	55.500	0.140	248.6	300	5.62	47.7	
6.0	00	Т3	SW5	1.929	0.600	55.500	56.000	-0.500	-3.9	225	5.03	49.8	
1.00	02	SW2	SW4	6.274	0.600	55.455	55.430	0.025	251.0	300	6.20	45.9	
5.0	00	B1	SW4	17.556	0.600	68.575	55.500	13.075	1.3	225	5.03	49.8	
4.00	00	SW3	SW4	49.700	0.600	55.600	55.430	0.170	292.4	300	5.91	46.8	
1.00	01	SW1	SW2	57.563	0.600	55.650	55.455	0.195	295.2	300	6.09	46.2	
1.00	00	A3	SW1	21.511	0.600	68.575	56.000	12.575	1.7	225	5.04	49.8	
2.00	00	A2	SW1	12.225	0.600	68.575	56.000	12.575	1.0	225	5.02	49.8	
3.00	00	A1	SW1	11.383	0.600	68.575	56.000	12.575	0.9	225	5.01	49.8	
10.0	000	SW12	SW13	8 7.971	0.600	54.790	54.700	0.090	88.6	225	5.10	49.5	
11.0	000	T1	Т2	1.954	0.600	55.600	55.500	0.100	19.5	225	5.01	49.8	

Name	Vel	Сар	Flow	US	DS	Σ Area	Σ Add	Pro
	(m/s)	(I/s)	(I/s)	Depth	Depth	(ha)	Inflow	Depth
				(m)	(m)		(I/s)	(mm)
8.000	15.752	626.3	2.8	1.200	1.005	0.017	0.0	11
1.005	0.988	157.1	113.1	0.835	0.940	0.843	0.0	283
1.004	1.090	173.3	102.8	0.810	0.835	0.750	0.0	250
1.003	0.959	152.5	78.5	1.020	0.810	0.570	0.0	229
6.002	0.947	66.9	25.9	1.020	0.810	0.180	0.0	129
6.001	0.992	70.2	8.8	0.760	1.020	0.057	0.0	71
6.000	1.000	39.8	0.0	0.975	0.475	0.000	0.0	0
1.002	0.988	69.8	25.4	0.925	1.020	0.170	0.0	125
5.000	11.380	452.5	10.8	1.200	1.025	0.066	0.0	24
4.000	0.914	64.6	25.6	0.800	1.020	0.168	0.0	131
1.001	0.910	64.3	25.6	0.790	0.925	0.170	0.0	132
1.000	10.080	400.8	1.2	1.200	0.515	0.008	0.0	9
2.000	13.376	531.8	3.2	1.200	0.515	0.020	0.0	13
3.000	13.862	551.2	6.6	1.200	0.515	0.041	0.0	17
10.000	1.390	55.3	0.0	1.185	1.075	0.000	0.0	0
11.000	2.974	118.2	9.5	0.875	0.975	0.059	0.0	43

Manhole Schedule

Node	Easting	Northing	CL (m)	Depth	Dia (mm)	Connections	Link	IL (m)	Dia (mm)
	(m)	(m)	(m)	(m)	(mm)			(m)	(mm)
SW1	697858.335	732225.826	56.740	1.090	1200	2 1	3.000	56.000	225
							2.000	56.000	225
						γ 3	1.000	56.000	225
						o 0	1.001	55.650	300
SW2	697843.091	732170.318	56.680	1.225	1200		1.001	55.455	300
						0	1.002	55.455	300

KAVANAGH BURKE	Kavanagh Burke Consulting Engineers	File: D1686 D1 Drainage and W Network: SW Bartosz Kedzierski 17/08/2022	Page 3
	Manhole	<u>Schedule</u>	

Node	Easting	Northing	CL	Depth	Dia	Connections		Link	IL	Dia
	(m)	(m)	(m)	(m)	(mm)				(m)	(mm)
SW3	697825.301	732121.636	56.700	1.100	1200					
						C)	4.000	55.600	300
SW4	697836.826	732169.981	56.750	1.470	1200	1 1	L	5.000	55.500	225
						0 ← 2	2	4.000	55.430	300
						γ 3	3	1.002	55.430	300
						2′ C)	1.003	55.280	450
SW5	697785.271	732115.292	56.700	1.060	1200		L	6.000	56.000	225
						C)	6.001	55.640	300
SW6	697751.453	732123.517	56.820	1.320	1200		L	6.001	55.500	300
						C)	6.002	55.500	300
SW7	697763.611	732187.834	56.370	1.260	1200	1	L	6.002	55.260	300
							2	1.003	55.110	450
<u></u>	607750 004	722400 700	56 200	4 205	1200	1 [′] 0)	1.004	55.110	450
5008	697758.831	/32189.789	56.380	1.285	1200			1.004	55.095	450
						C)	1.005	55.095	450
SW9	697745.494	732208.533	56.430	1.390	1200		L	1.005	55.040	450
						1 C)	1.006	55.040	450
SW10	697782.467	732247.599	56.230	1.310	1200	1		9.000	55.000	225
							2	8.000	55.000	225
						4	5	7.000	55.000	225
						31 - 4	+	1.005	54.920	450
S\\/11	697804 664	732250 621	56 200	1 /08	1200	1		1.007	54.920	450
	037004.004	752250.021	50.200	1.400	1200	1		1.007	54.070	430
SW12	697803.846	732252.102	56.200	1.410	1200	$\stackrel{\bullet}{\frown}$		10.000	F 4 700	225
S\A/12	607001 200	722260 061	56.000	1 200	1200	1	<u> </u>	10.000	54.790	225
20012	097604.288	752200.001	50.000	1.500	1200			10.000	54.700	225
Т3	697785.766	732117.156	56.700	1.200						
						Ĵ		6 000	55 500	225
т2	697767 889	732121 447	56 700	1 200		1	+	11 000	55 500	225
			50.700	1.200		1	-		55.500	223

	Kavanagh Burke	File: D1686 D1 Drainage and W	Page 4
Kavanagh Burke	Consulting Engineers	Network: SW	
CONSULTING ENGINEERS		Bartosz Kedzierski	
		17/08/2022	

Node	Easting (m)	Northing (m)	CL (m)	Depth (m)	Dia (mm)	Connection	S	Link	IL (m)	Dia (mm)
C2	697787.578	732239.568	70.000	1.425	1200	0				
							0	8.000	68.575	225
C3	697782.645	732239.543	70.000	1.425	1200	•				
							0	9.000	68.575	225
C1	697778.035	732229.457	70.000	1.425	1200					
							0	7.000	68.575	225
B1	697836.732	732187.537	70.000	1.425	1200	\bigcirc				
						↓ o	0	5.000	68.575	225
A1	697847.386	732228.939	70.000	1.425	1200					
							0	3.000	68.575	225
A2	697851.411	732235.901	70.000	1.425	1200	Q				
						0	0	2.000	68.575	225
A3	697840.704	732238.150	70.000	1.425	1200	$Q_{\mathbf{y}}$				
							0	1.000	68.575	225
T1	697766.011	732121.985	56.700	1.100						
							0	11.000	55.600	225

Simulation Settings

Rainfall Methodology	FSR	Analysis Speed	Detailed
FSR Region	Scotland and Ireland	Skip Steady State	х
M5-60 (mm)	16.500	Drain Down Time (mins)	240
Ratio-R	0.278	Additional Storage (m³/ha)	75.0
Summer CV	0.750	Check Discharge Rate(s)	х
Winter CV	0.840	Check Discharge Volume	х
	Storm Dura	tions	
15 60 18	0 360 600	960 2160 4320	7200
30 120 24	0 480 720	1440 2880 5760	

Return Period	Climate Change	Additional Area	Additional Flow	
(years)	(CC %) 20	(A %)	(Q %)	
50	50	0	0	
100	30	0	0	

AVANAGH BURKE	Kavanagn Consultin	g Engineers		Networl Bartosz 17/08/2	k: SW Kedziersk	i anage and w	Page 5	
		Node SW:	12 Online H	lydro-Bra	ke® Cont	<u>rol</u>		
FL	ap Valve	x		Ob	jective	(HE) Minimise	upstream storag	ge
Replaces Downstre	am Link	\checkmark		Sump Av	vailable	\checkmark		
Invert L	evel (m)	54.790	F	Product N	umber	CTL-SHE-0095	-4100-1100-4100)
Design De	epth (m)	1.100	Min Outl	let Diame	ter (m)	0.150		
Design F	low (l/s)	4.1	Min Node	e Diamete	r (mm)	1200		
		Node	e A1 Online	e Orifice C	<u>ontrol</u>			
FI	ap Valve	x	Design De	epth (m)	0.100	Discharge C	oefficient 0.60	0
Replaces Downstre	eam Link	\checkmark	Design F	low (l/s)	0.5			
Invert L	evel (m)	68.575	Diam	eter (m)	0.028			
		Node	e A2 Online	Orifice C	<u>ontrol</u>			
FI	ap Valve	x	Design De	epth (m)	0.100	Discharge C	oefficient 0.60	0
Replaces Downstre	eam Link	\checkmark	Design F	low (l/s)	0.2			
Invert L	evel (m)	68.575	Diam	eter (m)	0.017			
		Node	e A3 Online	Orifice C	<u>ontrol</u>			
FI	ap Valve	x	Design De	epth (m)	0.100	Discharge C	oefficient 0.60	0
Replaces Downstre	eam Link	\checkmark	Design F	low (l/s)	0.1			
Invert L	evel (m)	68.575	Diam	eter (m)	0.012			
		Node	e B1 Online	Orifice C	<u>ontrol</u>			
FI	ap Valve	x	Design De	epth (m)	0.100	Discharge C	oefficient 0.60	0
Replaces Downstre	eam Link	\checkmark	Design F	low (l/s)	0.5			
Invert L	evel (m)	68.575	Diam	eter (m)	0.028			
		Node	e C1 Online	Orifice C	<u>ontrol</u>			
FI	ap Valve	x	Design De	epth (m)	0.100	Discharge C	oefficient 0.60	0
Replaces Downstre	eam Link	\checkmark	Design F	low (l/s)	0.4			
Invert L	evel (m)	68.575	Diam	eter (m)	0.025			
		Node	e C2 Online	Orifice C	<u>ontrol</u>			
FI	ap Valve	x	Design De	epth (m)	0.100	Discharge C	oefficient 0.60	0
Replaces Downstre	eam Link	\checkmark	Design F	low (l/s)	0.2			
Invert L	evel (m)	68.575	Diam	eter (m)	0.017			
		Node	e C3 Online	Orifice C	<u>ontrol</u>			
FI	ap Valve	x	Design De	epth (m)	0.100	Discharge C	oefficient 0.60	0
Replaces Downstre	eam Link	\checkmark	Design F	low (l/s)	0.1			
Invert L	evel (m)	68.575	Diam	eter (m)	0.012			
	<u>No</u>	ode SW12 Fl	ow through	<u>h Pond St</u>	orage Str	<u>ucture</u>		
Base Inf Coefficient (m/hr)	0.00000			Porosity	0.95	Main Cha	nnel Length (m)	25.000
Side Inf Coefficient (m/hr)	0.00000		Invert L	Level (m)	54.790	Main Cha	nnel Slope (1:X)	10000.0
			1 10					0.045

KAVANAGH BURKE	Kavanagh Burke Consulting Enginee	rs	File: D1686 D1 Network: SW Bartosz Kedzie 17/08/2022	Drainage and W rski	Page 6
		Ini SW	ets /11		
Depth (m) 0.000	Area Inf Area (m²) (m²) 581.0 0.0	Depth Ar (m) (m 1.200 683	ea Inf Area ²) (m²) 1.0 0.0	Depth Area (m) (m²) 1.210 0.5	Inf Area (m²) 0.0
	Node T3 Fl	ow through	Pond Storage St	<u>ructure</u>	
Base Inf Coefficient (m/hr) Side Inf Coefficient (m/hr) Safety Factor	0.00000 0.00000 2.0 Time	Invert to half emp	Porosity 0.43 Level (m) 55.5 ty (mins)	Main Cha 00 Main Cha	nnel Length (m) 60.000 Innel Slope (1:X) 10000.0 Main Channel n 0.150
		Inl T	ets 2		
Depth (m) 0.000	Area Inf Area (m²) (m²) 120.0 0.0	Depth Ar (m) (m 0.800 120	ea Inf Area ²) (m²)).0 0.0	Depth Area (m) (m²) 0.810 1.0	Inf Area (m²) 0.0
	<u>Node A</u>	1 Depth/Are	ea Storage Struc	<u>ture</u>	
Base Inf Coefficier Side Inf Coefficier	nt (m/hr) 0.00000 nt (m/hr) 0.00000	Safety Fa Porc	ctor 2.0 osity 0.95	Invert Time to half emp	Level (m) 68.575 oty (mins) 0
	Depth Area (m) (m²) 0.000 251.0	Inf Area (m²) 0.0	Depth Area (m) (m² 0.100 251.	a Inf Area) (m²) 0 0.0	
	Node A	2 Depth/Are	ea Storage Struc	<u>ture</u>	
Base Inf Coefficier Side Inf Coefficier	nt (m/hr) 0.00000 nt (m/hr) 0.00000	Safety Fa Porc	ctor 2.0 osity 0.95	Invert Time to half emp	Level (m) 68.575 oty (mins) 0
	Depth Area (m) (m²) 0.000 149.0	Inf Area (m²) 0.0	Depth Are (m) (m ² 0.100 149.	a Inf Area) (m²) 0 0.0	
	<u>Node A</u>	<u>\3 Depth/Are</u>	a Storage Struc	<u>ture</u>	
Base Inf Coefficier Side Inf Coefficier	nt (m/hr) 0.00000 nt (m/hr) 0.00000	Safety Fa Porc	ctor 2.0 osity 0.95	Invert Time to half emp	Level (m) 68.575 oty (mins) 0
	Depth Area (m) (m²) 0.000 51.0	Inf Area (m²) 0.0	Depth Area (m) (m²) 0.100 51.0	a Inf Area) (m²)) 0.0	
	Node B	1 Depth/Are	a Storage Struct	ture	
Base Inf Coefficier Side Inf Coefficier	nt (m/hr) 0.00000 nt (m/hr) 0.00000	Safety Fa Porc	ctor 2.0 osity 0.95	Invert Time to half emp	Level (m) 68.575 oty (mins) 0
	Depth Area (m) (m²) 0.000 490.0	Inf Area (m²) 0.0	Depth Area (m) (m ² 0.100 490.	a Inf Area) (m²) 0 0.0	

KAVANAGH BURKE	Consulting E	ngineers		Network: Bartosz Ke 17/08/202	SW SW edziers 22	ki	Page 7		
	<u> </u>	Node C1 E	Depth/Are	a Storage S	Structu	<u>re</u>			
Base Inf Coefficient Side Inf Coefficient	: (m/hr) 0.0 : (m/hr) 0.0	0000 0000	Safety Fa Porc	ctor 2.0 osity 0.95	T	Invert I ime to half emp	evel (m) ty (mins)	68.575 0	
	Depth (m) 0.000	Area li (m²) 195.0	nf Area (m²) 0.0	Depth (m) 0.100	Area (m²) 195.0	Inf Area (m²) 0.0			
	<u> </u>	Node C2 E	Depth/Are	a Storage S	Structu	<u>re</u>			
Base Inf Coefficient Side Inf Coefficient	: (m/hr) 0.0 : (m/hr) 0.0	0000 0000	Safety Fa Porc	ctor 2.0 osity 0.95	T	Invert I ime to half emp	evel (m) ty (mins)	68.575 0	
	Depth (m) 0.000	Area lı (m²) 125.0	nf Area (m²) 0.0	Depth (m) 0.100	Area (m²) 125.0	Inf Area (m²) 0.0			
	<u> </u>	Node C3 E	Depth/Are	a Storage S	Structu	<u>re</u>			
Base Inf Coefficient Side Inf Coefficient	: (m/hr) 0.0 : (m/hr) 0.0	0000 0000	Safety Fa Porc	ctor 2.0 osity 0.95	T	Invert I ime to half emp	evel (m) ty (mins)	68.575 0	
	Depth (m) 0.000	Area lı (m²) 62.0	nf Area (m²) 0.0	Depth (m) 0.100	Area (m²) 62.0	Inf Area (m²) 0.0			
			<u>Rair</u>	<u>nfall</u>					
Event	Pe Inte (mr	eak A nsity In n/hr) (n	<u>Rair</u> verage tensity nm/hr)	<u>nfall</u>		Event		Peak Intensity (mm/hr)	Average Intensity (mm/hr)
Event 30 year +30% CC 15 minute sum	Pe Inte (mr mer 256	eak A nsity In n/hr) (n 5.250	<u>Rair</u> verage tensity nm/hr) 72.510	nfall 30 year -	+30% C	Event	winter	Peak Intensity (mm/hr) 7.090	Average Intensity (mm/hr) 2.844
Event 30 year +30% CC 15 minute sum 30 year +30% CC 15 minute wint 30 year +30% CC 30 minute sum	Po Inte (mr mer 256 cer 179 mer 179	eak A nsity In n/hr) (n 5.250 9.825 5.863	<u>Rair</u> verage tensity nm/hr) 72.510 72.510 49 763	nfall 30 year - 30 year - 30 year -	+30% C +30% C +30% C	Event CC 2160 minute of CC 2880 minute of CC 2880 minute of	winter summer winter	Peak Intensity (mm/hr) 7.090 8.686 5.838	Average Intensity (mm/hr) 2.844 2.328 2.328
Event 30 year +30% CC 15 minute sum 30 year +30% CC 15 minute wint 30 year +30% CC 30 minute sum 30 year +30% CC 30 minute wint	Pe Inte (mr mer 256 zer 179 mer 179 zer 123	eak A nsity In n/hr) (n 5.250 9.825 5.863 3.413	Rair verage tensity nm/hr) 72.510 72.510 49.763 49.763	nfall 30 year - 30 year - 30 year - 30 year - 30 year -	+30% C +30% C +30% C +30% C	Event CC 2160 minute of CC 2880 minute of CC 2880 minute of CC 4320 minute of	winter summer winter summer	Peak Intensity (mm/hr) 7.090 8.686 5.838 6.710	Average Intensity (mm/hr) 2.844 2.328 2.328 1.754
Event 30 year +30% CC 15 minute sum 30 year +30% CC 15 minute wint 30 year +30% CC 30 minute sum 30 year +30% CC 30 minute wint 30 year +30% CC 60 minute sum	Pe Inte (mr mer 256 er 179 mer 179 er 123 mer 123	eak A nsity In n/hr) (n 5.250 9.825 5.863 3.413 2.730	Rair verage tensity nm/hr) 72.510 72.510 49.763 49.763 32.434	nfall 30 year - 30 year - 30 year - 30 year - 30 year -	+30% C +30% C +30% C +30% C +30% C	Event CC 2160 minute (CC 2880 minute (CC 2880 minute (CC 4320 minute (CC 4320 minute (winter summer winter summer winter	Peak Intensity (mm/hr) 7.090 8.686 5.838 6.710 4.419	Average Intensity (mm/hr) 2.844 2.328 2.328 1.754 1.754
Event 30 year +30% CC 15 minute sum 30 year +30% CC 15 minute wint 30 year +30% CC 30 minute sum 30 year +30% CC 30 minute wint 30 year +30% CC 60 minute sum	Pe Inte (mr mer 256 er 179 mer 179 er 123 mer 123 er 82	eak A nsity In n/hr) (n 5.250 9.825 5.863 3.413 2.730 1.539	Rair verage tensity nm/hr) 72.510 72.510 49.763 49.763 32.434 32.434	nfall 30 year - 30 year - 30 year - 30 year - 30 year -	+30% C +30% C +30% C +30% C +30% C +30% C	Event C 2160 minute (C 2880 minute (C 2880 minute (C 4320 minute (C 4320 minute (C 5760 minute (winter summer winter summer winter summer	Peak Intensity (mm/hr) 7.090 8.686 5.838 6.710 4.419 5.604	Average Intensity (mm/hr) 2.844 2.328 2.328 1.754 1.754 1.435
Event 30 year +30% CC 15 minute sum 30 year +30% CC 15 minute wint 30 year +30% CC 30 minute sum 30 year +30% CC 30 minute wint 30 year +30% CC 60 minute sum 30 year +30% CC 120 minute sur 30 year +30% CC 120 minute wint	Pe Inte (mr mer 256 cer 179 mer 179 cer 122 mer 122 cer 83 mmer 78 mmer 78	eak A nsity In n/hr) (n 5.250 9.825 5.863 3.413 2.730 1.539 3.040 1.848	Rair verage tensity nm/hr) 72.510 72.510 49.763 49.763 32.434 32.434 20.624 20.624	10 year - 30 year -	+30% (+30% (+30% (+30% (+30% (+30% (+30% (Event C 2160 minute (C 2880 minute (C 2880 minute (C 4320 minute (C 4320 minute (C 5760 minute (C 5760 minute (C 5760 minute (C 5760 minute ()	winter summer winter summer winter summer winter	Peak Intensity (mm/hr) 7.090 8.686 5.838 6.710 4.419 5.604 3.627 4.810	Average Intensity (mm/hr) 2.844 2.328 2.328 1.754 1.754 1.754 1.435 1.435 1.435
Event 30 year +30% CC 15 minute sum 30 year +30% CC 15 minute wint 30 year +30% CC 30 minute sum 30 year +30% CC 30 minute wint 30 year +30% CC 60 minute sum 30 year +30% CC 120 minute sur 30 year +30% CC 120 minute sur 30 year +30% CC 180 minute sur	Pe Inte (mr mer 256 er 179 mer 179 er 123 mer 123 mer 123 mer 78 nter 53 mmer 53	eak A nsity In n/hr) (n 5.250 9.825 5.863 3.413 2.730 1.539 3.040 1.848 1.046	Rair verage tensity nm/hr) 72.510 72.510 49.763 49.763 32.434 32.434 20.624 20.624 15.709	10 year - 30 year -	+30% C +30% C +30% C +30% C +30% C +30% C +30% C +30% C +30% C	Event C 2160 minute (C 2880 minute (C 2880 minute (C 4320 minute (C 4320 minute (C 5760 minute (C 5760 minute (C 7200 minute (C 7200 minute (winter summer winter summer winter summer winter summer winter	Peak Intensity (mm/hr) 7.090 8.686 5.838 6.710 4.419 5.604 3.627 4.810 3.105	Average Intensity (mm/hr) 2.844 2.328 2.328 1.754 1.754 1.754 1.435 1.435 1.227 1.227
Event 30 year +30% CC 15 minute sum 30 year +30% CC 15 minute wint 30 year +30% CC 30 minute sum 30 year +30% CC 30 minute wint 30 year +30% CC 60 minute sum 30 year +30% CC 120 minute sur 30 year +30% CC 120 minute sur 30 year +30% CC 180 minute sur 30 year +30% CC 180 minute sur	Pe Inte (mr mer 256 cer 179 mer 179 cer 122 mer 122 mer 122 cer 83 mer 78 nter 53 nter 53 nter 33	eak A nsity In n/hr) (n 5.250 9.825 5.863 3.413 2.730 1.539 3.040 1.848 1.046 9.682	Rair verage tensity nm/hr) 72.510 72.510 49.763 49.763 32.434 32.434 20.624 20.624 15.709 15.709	100 year - 30 year -	+30% C +30% C +30% C +30% C +30% C +30% C +30% C +30% C	Event CC 2160 minute of CC 2880 minute of CC 2880 minute of CC 4320 minute of CC 4320 minute of CC 5760 minute of CC 5760 minute of CC 7200 minute of CC 75 minute of CC 15 minute of	winter summer winter summer winter summer winter winter immer	Peak Intensity (mm/hr) 7.090 8.686 5.838 6.710 4.419 5.604 3.627 4.810 3.105 332.272	Average Intensity (mm/hr) 2.844 2.328 2.328 1.754 1.754 1.435 1.435 1.227 1.227 94.022
Event 30 year +30% CC 15 minute sum 30 year +30% CC 15 minute wint 30 year +30% CC 30 minute sum 30 year +30% CC 30 minute wint 30 year +30% CC 60 minute sum 30 year +30% CC 120 minute sur 30 year +30% CC 120 minute sur 30 year +30% CC 180 minute sur 30 year +30% CC 180 minute sur	Pe Inte (mr mer 256 er 179 mer 179 er 123 mer 123 mer 123 mer 123 mer 53 mer 53 mmer 63 mmer 39 mmer 39	eak A nsity In n/hr) (n 5.250 9.825 5.863 3.413 2.730 1.539 3.040 1.848 1.046 9.682 3.928	Rair verage tensity nm/hr) 72.510 72.510 49.763 32.434 32.434 20.624 20.624 15.709 15.709 12.930	nfall 30 year 30 year 30 year 30 year 30 year 30 year 30 year 30 year 30 year 100 year 100 year	+30% C +30% C +30% C +30% C +30% C +30% C +30% C +30% C +30% C +30% C	Event C 2160 minute of C 2880 minute of C 2880 minute of C 4320 minute of C 4320 minute of C 5760 minute of C 5760 minute of C 7200 minute of C 7200 minute of C 7200 minute of C 7200 minute of C 7200 minute of C 7200 minute o	winter summer winter summer winter summer winter ummer inter	Peak Intensity (mm/hr) 7.090 8.686 5.838 6.710 4.419 5.604 3.627 4.810 3.105 332.272 233.174	Average Intensity (mm/hr) 2.844 2.328 2.328 1.754 1.754 1.435 1.435 1.435 1.227 1.227 94.022 94.022
Event 30 year +30% CC 15 minute sum 30 year +30% CC 15 minute wint 30 year +30% CC 30 minute sum 30 year +30% CC 30 minute wint 30 year +30% CC 60 minute sum 30 year +30% CC 120 minute sur 30 year +30% CC 120 minute sur 30 year +30% CC 180 minute sur 30 year +30% CC 180 minute sur 30 year +30% CC 240 minute sur 30 year +30% CC 240 minute sur	Pe Inte (mr mer 256 eer 179 mer 179 eer 122 mer 122 mer 122 eer 83 mer 78 nter 53 nter 53 nter 33 nter 33 nter 33 nter 33 nter 33	eak A nsity In n/hr) (n 5.250 9.825 5.863 3.413 2.730 1.539 3.040 1.848 1.046 9.682 3.928 2.506 2.006	Rair verage tensity nm/hr) 72.510 72.510 49.763 49.763 32.434 32.434 20.624 20.624 15.709 15.709 12.930 12.930 0 902	nfall 30 year - 30 year - 100 year 100 year 100 year	+30% C +30% C +30% C +30% C +30% C +30% C +30% C +30% C +30% C +30% - +30%	Event C 2160 minute (C 2880 minute (C 2880 minute (C 4320 minute (C 4320 minute (C 5760 minute (C 7200 m	winter summer winter summer winter summer summer winter inter inter	Peak Intensity (mm/hr) 7.090 8.686 5.838 6.710 4.419 5.604 3.627 4.810 3.105 332.272 233.174 229.572 161 103	Average Intensity (mm/hr) 2.844 2.328 2.328 1.754 1.754 1.435 1.435 1.227 94.022 94.022 94.022 64.961
Event 30 year +30% CC 15 minute sum 30 year +30% CC 15 minute wint 30 year +30% CC 30 minute sum 30 year +30% CC 30 minute wint 30 year +30% CC 60 minute sum 30 year +30% CC 120 minute sur 30 year +30% CC 120 minute sur 30 year +30% CC 180 minute sur 30 year +30% CC 180 minute sur 30 year +30% CC 240 minute sur 30 year +30% CC 240 minute sur 30 year +30% CC 240 minute sur 30 year +30% CC 360 minute sur 30 year +30% CC 360 minute sur	Pe Inte (mr mer 256 er 179 mer 179 er 123 mer 123 mer 123 mer 123 mer 123 mer 123 mer 38 mer 38 mer 38 mer 38 mer 38 mer 38 mer 38 mer 38	eak A nsity In n/hr) (n 5.250 9.825 5.863 3.413 2.730 1.539 3.040 1.539 3.040 1.848 1.046 9.682 3.928 2.506 3.096 4.763	Rair verage tensity nm/hr) 72.510 72.510 49.763 49.763 32.434 20.624 20.624 15.709 15.709 12.930 12.930 9.803 9.803	nfall 30 year 30 year 30 year 30 year 30 year 30 year 30 year 30 year 100 year 100 year 100 year 100 year	+30% C +30% C +30% C +30% C +30% C +30% C +30% C +30% C +30% - +30% - +30% - +30% - +30% - +30% - +30%	Event CC 2160 minute of CC 2880 minute of CC 2880 minute of CC 4320 minute of CC 4320 minute of CC 4320 minute of CC 5760 minute of CC 7200 minute of CC 7200 minute of CC 15 minute of CC 15 minute of CC 15 minute of CC 15 minute of CC 30 minute of CC 30 minute of CC 30 minute of CC 60 minute of	winter summer winter summer winter summer winter ummer inter ummer inter	Peak Intensity (mm/hr) 7.090 8.686 5.838 6.710 4.419 5.604 3.627 4.810 3.105 332.272 233.174 229.572 161.103 159.465	Average Intensity (mm/hr) 2.844 2.328 2.328 1.754 1.754 1.754 1.435 1.435 1.227 1.227 94.022 94.022 94.022 64.961 64.961 42.142
Event 30 year +30% CC 15 minute sum 30 year +30% CC 15 minute wint 30 year +30% CC 30 minute sum 30 year +30% CC 30 minute wint 30 year +30% CC 60 minute sum 30 year +30% CC 60 minute sun 30 year +30% CC 120 minute sur 30 year +30% CC 120 minute sur 30 year +30% CC 180 minute sur 30 year +30% CC 180 minute sur 30 year +30% CC 240 minute sur 30 year +30% CC 240 minute sur 30 year +30% CC 360 minute sur 30 year +30% CC 360 minute sur 30 year +30% CC 480 minute sur	Pe Inte (mr mer 256 eer 179 mer 123 mer 123 mer 123 mer 123 mer 78 nter 53 nter 53 nter 33 nter 33 nter 33 nter 33 nter 34 nter 34 nter 34 nter 34 nter 34 nter 34 nter 34	eak A nsity In n/hr) (n 5.250 9.825 5.863 3.413 2.730 1.539 3.040 1.848 1.046 9.682 3.928 2.506 3.096 4.763 0.446	Rair verage tensity nm/hr) 72.510 72.510 49.763 49.763 32.434 32.434 20.624 20.624 15.709 12.930 12.930 9.803 9.803 8.046	nfall 30 year - 30 year - 100 year 100 year 100 year 100 year 100 year	+30% C +30% C +30% C +30% C +30% C +30% C +30% C +30% C +30% - +30% - +30% - +30% - +30% - +30% - +30%	Event C 2160 minute of C 2880 minute of C 2880 minute of C 4320 minute of C 4320 minute of C 5760 minute of C 7200 minute of C 7200 minute of C 7200 minute of C 15 minute of C 15 minute of C 30 minute of C 30 minute of C 60 minute of C 60 minute of	winter summer winter summer winter summer summer inter inter inter immer inter inter	Peak Intensity (mm/hr) 7.090 8.686 5.838 6.710 4.419 5.604 3.627 4.810 3.105 332.272 233.174 229.572 161.103 159.465 105.945	Average Intensity (mm/hr) 2.844 2.328 2.328 1.754 1.754 1.435 1.435 1.227 94.022 94.022 94.022 94.022 64.961 64.961 42.142
Event 30 year +30% CC 15 minute sum 30 year +30% CC 15 minute wint 30 year +30% CC 30 minute sum 30 year +30% CC 30 minute sum 30 year +30% CC 60 minute sum 30 year +30% CC 60 minute sun 30 year +30% CC 120 minute sur 30 year +30% CC 120 minute sur 30 year +30% CC 180 minute sur 30 year +30% CC 180 minute sur 30 year +30% CC 240 minute sur 30 year +30% CC 240 minute sur 30 year +30% CC 360 minute sur 30 year +30% CC 360 minute sur 30 year +30% CC 480 minute sur 30 year +30% CC 480 minute sur	Pe Inte (mr mer 256 eer 179 mer 179 eer 122 mer 122 mer 122 eer 83 mmer 78 nter 53 nter 53 nter 33 nter 33 nter 33 nter 34 nter 34 nte	eak A innsity In n/hr) (n 5.250 5.863 3.413 2.730 1.539 3.040 1.848 1.046 9.682 3.928 2.506 3.096 4.763 0.446 0.228 0.446	Rair verage tensity nm/hr) 72.510 72.510 49.763 32.434 32.434 20.624 15.709 12.930 12.930 9.803 9.803 8.046	nfall 30 year 30 year 30 year 30 year 30 year 30 year 30 year 30 year 100 year 100 year 100 year 100 year 100 year 100 year	+30% C +30% C +30% C +30% C +30% C +30% C +30% C +30% C +30% - +30% - +30% - +30% - +30% - +30% - +30% - +30%	Event C 2160 minute of C 2880 minute of C 2880 minute of C 4320 minute of C 4320 minute of C 5760 minute of C 7200 minute of C 7200 minute of C 7200 minute of C 15 minute of C 15 minute of C 30 minute of C 30 minute of C 60 minute of C 120 minute of C 120 minute of C 120 minute of	winter summer winter summer winter summer winter ummer inter ummer inter ummer inter summer	Peak Intensity (mm/hr) 7.090 8.686 5.838 6.710 4.419 5.604 3.627 4.810 3.105 332.272 233.174 229.572 161.103 159.465 105.945 100.576	Average Intensity (mm/hr) 2.844 2.328 2.328 1.754 1.754 1.435 1.435 1.227 1.227 94.022 94.022 94.022 64.961 64.961 42.142 42.142 26.579
Event 30 year +30% CC 15 minute sum 30 year +30% CC 15 minute wint 30 year +30% CC 30 minute sum 30 year +30% CC 30 minute wint 30 year +30% CC 60 minute sum 30 year +30% CC 120 minute sur 30 year +30% CC 120 minute sur 30 year +30% CC 180 minute sur 30 year +30% CC 180 minute sur 30 year +30% CC 240 minute sur 30 year +30% CC 240 minute sur 30 year +30% CC 360 minute sur 30 year +30% CC 360 minute sur 30 year +30% CC 480 minute sur 30 year +30% CC 480 minute sur 30 year +30% CC 480 minute sur 30 year +30% CC 600 minute sur	Pe Inte (mr mer 256 eer 179 mer 123 mer 123 mer 123 mer 123 mer 123 mer 33 nter 33 nter 33 nter 33 nter 34 nter 33 nter 36 nter 36 nte	eak A insity In n/hr) (n 5.250 9 9.825 5 5.863 3 3.413 2 2.730 1 1.539 3 3.040 1 1.848 1 1.046 9 9.825 3 3.040 1 1.848 1 1.046 9 2.506 3 3.096 4 4.763 9 0.446 9 0.228 5 5.225 7	Rair verage tensity mm/hr) 72.510 72.510 49.763 49.763 32.434 32.434 20.624 15.709 12.930 12.930 12.930 9.803 9.803 9.803 8.046 8.046 6.900 6.000	nfall 30 year - 30 year - 100 year 100 year 100 year 100 year 100 year 100 year 100 year	+30% C +30% C +30% C +30% C +30% C +30% C +30% C +30% C +30% - +30% - +30% - +30% - +30% - +30% - +30% - +30% - +30% - +30%	Event C 2160 minute (C 2880 minute (C 2880 minute (C 4320 minute (C 4320 minute (C 5760 minute (C 7200 minute (C 7200 minute (C 7200 minute (C 15 minute (C 15 minute (C 30 minute (C 30 minute (C 30 minute (C 120 minut	winter summer winter summer winter summer winter ummer inter ummer inter ummer inter summer inter	Peak Intensity (mm/hr) 7.090 8.686 5.838 6.710 4.419 5.604 3.627 4.810 3.105 332.272 233.174 229.572 161.103 159.465 105.945 100.576 66.821	Average Intensity (mm/hr) 2.844 2.328 2.328 1.754 1.754 1.435 1.435 1.227 94.022 94.022 94.022 94.022 94.022 94.022 94.022 94.022 94.022 94.022 94.022 94.022 94.022 94.022 94.022
Event 30 year +30% CC 15 minute sum 30 year +30% CC 15 minute wint 30 year +30% CC 30 minute sum 30 year +30% CC 30 minute wint 30 year +30% CC 60 minute wint 30 year +30% CC 120 minute sun 30 year +30% CC 120 minute sun 30 year +30% CC 120 minute sun 30 year +30% CC 180 minute sun 30 year +30% CC 180 minute sun 30 year +30% CC 240 minute sun 30 year +30% CC 240 minute sun 30 year +30% CC 360 minute sun 30 year +30% CC 360 minute sun 30 year +30% CC 480 minute sun 30 year +30% CC 480 minute sun 30 year +30% CC 600 minute sun 30 year +30% CC 600 minute sun 30 year +30% CC 600 minute sun 30 year +30% CC 720 minute sun	Pe Inter (mr mer 256 eer 179 mer 179 eer 122 mer 122 mer 122 eer 83 mmer 78 nter 53 nter 53 nter 38 nter 38 nter 38 nter 38 nter 38 nter 38 nter 38 nter 38 nter 38 nter 24 nter 30 nter 20 nter 22 nter 17 nter 38 nter 38 nt	eak A innity In n/hr) (n 5.250 9.825 5.863 3.413 2.730 1.539 3.040 1.848 1.046 9.682 3.096 4.763 0.446 0.228 5.225 7.235 2.700 1.000	Rair verage tensity nm/hr) 72.510 72.510 49.763 49.763 32.434 20.624 20.624 20.624 15.709 12.930 12.930 9.803 9.803 9.803 8.046 8.046 6.900 6.900 6.084	30 year 100 ye	+30% C +30% C +30% C +30% C +30% C +30% C +30% C +30% C +30% - +30% - +3	Event C 2160 minute of C 2880 minute of C 2880 minute of C 4320 minute of C 4320 minute of C 5760 minute of C 5760 minute of C 7200 minute of C 7200 minute of C 7200 minute of C 15 minute of C 30 minute of C 30 minute of C 30 minute of C 30 minute of C 120 minute of C 120 minute of C 180 minute of C 180 minute of C 180 minute of C 1	winter summer winter summer winter summer winter inter inter inter inter ummer inter summer winter summer winter summer winter	Peak Intensity (mm/hr) 7.090 8.686 5.838 6.710 4.419 5.604 3.627 4.810 3.105 332.272 233.174 229.572 161.103 159.465 105.945 100.576 66.821 78.194 50.828	Average Intensity (mm/hr) 2.844 2.328 2.328 1.754 1.754 1.435 1.435 1.435 1.227 1.227 94.022 94.022 94.022 94.022 64.961 64.961 42.142 42.142 42.142 26.579 26.579 20.122 20.122
Event 30 year +30% CC 15 minute sum 30 year +30% CC 15 minute wint 30 year +30% CC 30 minute sum 30 year +30% CC 30 minute sum 30 year +30% CC 60 minute sum 30 year +30% CC 120 minute sur 30 year +30% CC 180 minute sur 30 year +30% CC 240 minute sur 30 year +30% CC 240 minute sur 30 year +30% CC 360 minute sur 30 year +30% CC 360 minute sur 30 year +30% CC 480 minute sur 30 year +30% CC 600 minute sur 30 year +30% CC 600 minute sur 30 year +30% CC 720 minute sur 30 year +30% CC 720 minute sur 30 year +30% CC 720 minute sur $30 \text{ year } +30\% \text{ CC } 720 \text{ minute sur}$ } $30 \text{ year } +30\% \text{ CC } 720 \text{ minute sur}$ }	Pe Inte (mr mer 256 ser 179 mer 123 mer 123 mer 123 mer 123 mer 123 mer 123 mer 33 mer 33 mer 34 mer 34 mer 34 mer 36 mer	eak A: insity In n/hr) (n 5.250 9 5.863 3 3.413 2 2.730 1 1.539 3 3.040 1 1.848 1 1.046 9 3.928 2 2.506 3 3.096 4 4.763 0 0.228 5 5.225 7 2.700 5 5.256	Rair verage tensity nm/hr) 72.510 72.510 49.763 32.434 32.434 32.434 20.624 20.624 15.709 12.930 12.930 12.930 9.803 9.803 9.803 8.046 8.046 6.900 6.900 6.084 6.084	30 year 100 ye	+30% C +30% C +30% C +30% C +30% C +30% C +30% C +30% C +30% - +30% - +3	Event C 2160 minute (C 2880 minute (C 2880 minute (C 4320 minute (C 7200 minute (C 7200 minute (C 15 minute (C 30 minute (C 120 minute (C 120 minute (C 120 minute (C 180 minute (C 240 minute	winter summer winter summer winter summer winter ummer inter ummer inter ummer inter summer winter summer winter summer winter summer winter	Peak Intensity (mm/hr) 7.090 8.686 5.838 6.710 4.419 5.604 3.627 4.810 3.105 332.272 233.174 229.572 161.103 159.465 105.945 100.576 66.821 78.194 50.828 62.395	Average Intensity (mm/hr) 2.844 2.328 2.328 1.754 1.754 1.435 1.435 1.227 94.022
Event 30 year +30% CC 15 minute sum 30 year +30% CC 15 minute wint 30 year +30% CC 30 minute sum 30 year +30% CC 30 minute wint 30 year +30% CC 60 minute sum 30 year +30% CC 120 minute sur 30 year +30% CC 120 minute sur 30 year +30% CC 120 minute sur 30 year +30% CC 180 minute sur 30 year +30% CC 180 minute sur 30 year +30% CC 240 minute sur 30 year +30% CC 240 minute sur 30 year +30% CC 360 minute sur 30 year +30% CC 360 minute sur 30 year +30% CC 480 minute sur 30 year +30% CC 480 minute sur 30 year +30% CC 480 minute sur 30 year +30% CC 600 minute sur 30 year +30% CC 720 minute sur	Pe Inter (mr mer 256 cer 179 mer 123 mer 123 mer 123 mer 123 mer 24 mer 33 mer 34 mer 34 mer 34 mer 34 mer 34 mer 34 mer 24 mer 24 mer 25 mer 36 mer	eak A nsity In n/hr) (n 5.250 5.863 3.413 2.730 1.539 3.040 1.848 1.046 9.682 3.040 1.848 1.046 9.682 3.096 4.763 0.446 0.228 5.255 7.235 2.700 5.256 3.937	Rair verage tensity nm/hr) 72.510 72.510 49.763 32.434 32.434 20.624 15.709 12.930 9.803 9.803 9.803 8.046 6.900 6.084 6.084 4.987	30 year 100 ye	+30% C +30% C +30% C +30% C +30% C +30% C +30% C +30% C +30% - +30% - +3	Event C 2160 minute (C 2880 minute (C 2880 minute (C 4320 minute (C 4320 minute (C 5760 minute (C 5760 minute (C 7200 minute (C 7200 minute (C 7200 minute (C 15 minute (C 15 minute (C 30 minute (C 30 minute (C 30 minute (C 120 minute (C 180 minute (C 240 minute (C 240 minute (C 240 minute (winter summer winter summer winter summer winter inter inter inter inter summer inter summer winter summer winter summer winter summer winter	Peak Intensity (mm/hr) 7.090 8.686 5.838 6.710 4.419 5.604 3.627 4.810 3.105 332.272 233.174 229.572 161.103 159.465 105.945 100.576 66.821 78.194 50.828 62.395 41.454	Average Intensity (mm/hr) 2.844 2.328 2.328 1.754 1.754 1.435 1.435 1.435 1.227 94.022 94.022 94.022 94.022 64.961 64.961 42.142 42.142 26.579 26.579 20.122 20.122 16.489 16.489
Event 30 year +30% CC 15 minute sum 30 year +30% CC 15 minute wint 30 year +30% CC 30 minute sum 30 year +30% CC 30 minute sum 30 year +30% CC 60 minute sum 30 year +30% CC 60 minute sun 30 year +30% CC 120 minute sur 30 year +30% CC 120 minute sur 30 year +30% CC 180 minute sur 30 year +30% CC 180 minute sur 30 year +30% CC 240 minute sur 30 year +30% CC 240 minute sur 30 year +30% CC 360 minute sur 30 year +30% CC 360 minute sur 30 year +30% CC 480 minute sur 30 year +30% CC 480 minute sur 30 year +30% CC 480 minute sur 30 year +30% CC 600 minute sur 30 year +30% CC 720 minute sur 30 year +30% CC 720 minute sur 30 year +30% CC 960 minute sur 30 year +30% CC 960 minute sur	Pe Inter (mr mer 256 eer 179 mer 179 eer 123 mer 123 mer 123 mer 223 mer 33 mer 33 mer 34 mer 34 mer 34 mer 34 mer 34 mer 24 mer 24 mer 24 mer 24 mer 24 mer 24 mer 24 mer 24 mer 36 mer 24 mer 36 mer 36 me	eak A innsity In n/hr) (n 5.250 5.863 3.413 2.730 1.539 3.040 1.848 1.046 9.682 3.928 2.506 3.096 4.763 0.446 0.228 5.225 7.235 2.700 5.256 3.937 2.544 -0.97	Rair verage tensity nm/hr) 72.510 72.510 49.763 32.434 20.624 20.624 15.709 15.709 15.709 12.930 2.930 9.803 9.803 8.046 8.046 6.900 6.900 6.084 4.987 4.987	30 year 100 yea	+30% C +30% C +30% C +30% C +30% C +30% C +30% C +30% C +30% - +30% - +1	Event C 2160 minute (C 2880 minute (C 2880 minute (C 4320 minute (C 4320 minute (C 4320 minute (C 5760 minute (C 7200 minute (C 7200 minute (C 7200 minute (C 15 minute (C 15 minute (C 30 minute (C 30 minute (C 120 minute (C 120 minute (C 180 minute (C 240 minute (C 240 minute (C 240 minute (C 360 minute (winter summer winter summer winter summer winter ummer inter ummer inter summer winter summer winter summer winter summer winter summer winter	Peak Intensity (mm/hr) 7.090 8.686 5.838 6.710 4.419 5.604 3.627 4.810 3.105 332.272 233.174 229.572 161.103 159.465 105.945 100.576 66.821 78.194 50.828 62.395 41.454 48.250	Average Intensity (mm/hr) 2.844 2.328 2.328 1.754 1.754 1.754 1.435 1.435 1.227 94.022 94.022 94.022 94.022 64.961 64.961 42.142 42.142 26.579 26.579 26.579 20.122 20.122 16.489 16.489 12.416
Event 30 year +30% CC 15 minute sum 30 year +30% CC 15 minute wint 30 year +30% CC 30 minute sum 30 year +30% CC 30 minute wint 30 year +30% CC 60 minute sum 30 year +30% CC 120 minute sur 30 year +30% CC 120 minute sur 30 year +30% CC 120 minute sur 30 year +30% CC 180 minute sur 30 year +30% CC 180 minute sur 30 year +30% CC 240 minute sur 30 year +30% CC 240 minute sur 30 year +30% CC 360 minute sur 30 year +30% CC 360 minute sur 30 year +30% CC 480 minute sur 30 year +30% CC 480 minute sur 30 year +30% CC 480 minute sur 30 year +30% CC 720 minute sur 30 year +30% CC 720 minute sur 30 year +30% CC 960 minute sur 30 year +30% CC 960 minute sur 30 year +30% CC 960 minute sur 30 year +30% CC 1440 minute sur 30 year +30% CC 1440 minute sur	Pe Inter (mr mer 256 ser 179 mer 123 mer 123 mer 123 mer 123 mer 24 mer 33 mer 38 mer 39 mer 39 mer 39 mer 39 mer 39 mer 39 mer	eak A innity In n/hr) (n 5.250	Rair verage tensity nm/hr) 72.510 72.510 49.763 49.763 32.434 32.434 20.624 15.709 12.930 12.930 9.803 9.803 9.803 8.046 8.046 6.900 6.900 6.084 6.900 6.084 4.987 4.987 3.767 2.767	30 year 100 yea	+30% C +30% C +30% C +30% C +30% C +30% C +30% C +30% C +30% - +30% - +3	Event C 2160 minute (C 2880 minute (C 2880 minute (C 2880 minute (C 4320 minute (C 4320 minute (C 5760 minute (C 5760 minute (C 7200 minute (C 7200 minute (C 7200 minute (C 7200 minute (C 15 minute (C 15 minute (C 30 minute (C 30 minute (C 30 minute (C 120 minute (C 120 minute (C 180 minute (C 180 minute (C 240 minute (C 240 minute (C 360 mi	winter summer winter summer winter summer winter ummer inter ummer inter summer winter summer winter summer winter summer winter summer winter	Peak Intensity (mm/hr) 7.090 8.686 5.838 6.710 4.419 5.604 3.627 4.810 3.105 332.272 233.174 229.572 161.103 159.465 105.945 100.576 66.821 78.194 50.828 62.395 41.454 48.250 31.364 28.266	Average Intensity (mm/hr) 2.844 2.328 2.328 1.754 1.754 1.435 1.435 1.227 94.022 94.022 94.022 94.022 64.961 42.142 42.142 26.579 26.529 26.52
KAVANAGH BURKE	Kavanagh Burke Consulting Enginee	ers	File: D1686 D1 Drainage and W Network: SW Bartosz Kedzierski 17/08/2022	Page 8					
----------------------------------	--------------------------------------	---------------------------------	--	----------	------------------------------	---------------------------------			
		Rai	nfall						
Event	Peak Intensity (mm/hr)	Average Intensity (mm/hr)	Event		Peak Intensity (mm/hr)	Average Intensity (mm/hr)			
100 year +30% CC 600 minute sum	1.658 mer	8.659	100 year +30% CC 2160 minute	e winter	8.689	3.485			
100 year +30% CC 600 minute wint	ter 21.631	8.659	100 year +30% CC 2880 minute	summer	10.584	2.837			
100 year +30% CC 720 minute sum	nmer 28.394	7.610	100 year +30% CC 2880 minute	e winter	7.113	2.837			
100 year +30% CC 720 minute wint	ter 19.082	7.610	100 year +30% CC 4320 minute	e summer	8.107	2.120			
100 year +30% CC 960 minute sum	nmer 23.561	6.204	100 year +30% CC 4320 minute	e winter	5.339	2.120			
100 year +30% CC 960 minute wint	ter 15.607	6.204	100 year +30% CC 5760 minute	e summer	6.728	1.722			
100 year +30% CC 1440 minute sur	mmer 17.355	4.651	100 year +30% CC 5760 minute	e winter	4.355	1.722			
100 year +30% CC 1440 minute wit	nter 11.663	4.651	100 year +30% CC 7200 minute	e summer	5.746	1.466			
100 year +30% CC 2160 minute sur	mmer 12.610	3.485	100 year +30% CC 7200 minute	e winter	3.709	1.466			

	Kavanag	h Burke		File	: D1686	D1 Drainage	and W	Page 9	
Kavanagh Burke	Consulti	ng Engineers	S	Net	work: SV	V			
CONSULTING ENGINEERS				Bar	tosz Kedi	zierski			
				17/	08/2022				
<u>Results</u>	for 30 year	<u>+30% CC Cı</u>	ritical Sto	orm Dur	ation. Lo	owest mass	balance:	<u>99.65%</u>	
Node Front		Deal	امريما	Donth	Inflor	· Nodo	Flood	Status	
Node Event	US	Реак	Level	Depth		/ NOGE	FI000	Status	i
15 minute winter		e (mins)	(m)	(m)	(I/S)	VOI (M ⁻)	(m ⁻)		
15 minute winter	2001	10	55.803	0.155	33.7	1.2431	0.0000		
15 minute winter	SW2	13	55./22	0.267	33.4	+ 0.3016	0.0000		
15 minute winter	5003	11	55.811	0.211	55.4	4 2.6486	0.0000) OK	
15 minute winter	SW4	13	55./14	0.434	129.0	4.1448	0.0000		
15 minute winter	SW5	11	55.742	0.102	18.7	0.5265	0.0000		
15 minute winter	SW6	12	55./14	0.214	58.7	1./41/	0.0000) OK	
2160 minute win	ter SW7	2040	55.709	0.599	10.9	0.6776	0.0000) SURCHAR	GED
2160 minute win	ter SW8	2040	55.709	0.614	12.0	4.0469	0.0000) SURCHAR	GED
2160 minute win	ter SW9	2040	55.709	0.669	12.8	3 2.8790	0.0000) SURCHAR	GED
2160 minute win	ter SW10	2040	55.709	0.789	12.8	0.8924	0.0000) SURCHAR	GED
2160 minute win	ter SW1	L 2040	55.708	0.916	17.5	5 15.8989	0.0000) OK	
2160 minute win	ter SW12	2 2040	55.709	0.919	10.5	5 1.0394	0.0000) SURCHAR	GED
15 minute summ	er SW13	3 1	54.700	0.000	4.0	0.0000	0.0000) ОК	
1440 minute win	ter T3	840	56.012	0.512	1.1	L 0.0000	0.0000) SURCHAR	GED
1440 minute win	ter T2	840	56.012	0.512	6.1	L 0.0000	0.0000) ОК	
1440 minute win	ter C2	1020	68.639	0.064	0.4	7.7146	0.0000) OK	
720 minute winte	er C3	675	68.643	0.068	0.3	4.1081	0.0000) OK	
720 minute winte	er C1	540	68.644	0.069	1.1	l 13.0519	0.0000) OK	
2160 minute win	ter B1	1560	68.647	0.072	1.1	33.7281	0.0000) OK	
960 minute winte	er A1	705	68.646	0.071	1.2	2 17.0590	0.0000) OK	
960 minute winte	er A2	735	68.640	0.065	0.6	9.3339	0.0000) OK	
600 minute winte	er A3	555	68.643	0.068	0.3	3.3800	0.0000) OK	
1440 minute win	ter T1	840	56.012	0.412	9.7	1.6502	0.0000) SURCHAR	GED
Link Event l	JS	Link	D	S OL	itflow	Velocity F	low/Cap	Link	Discharge
(Outflow) No	ode	4	NO	de ((I/S)	(m/s)	0 5 2 0	VOI (m ²)	vol (m²)
15 minute winter SV	/1 1.00	1	SVV	2	33.4	0.874	0.520	2.7382	
15 minute summer SV	/2 1.00	2	SVV	4	27.7	0.804	0.397	0.3494	
15 minute winter SV	/3 4.00	0	SW	4	52.2	1.042	0.808	2.8804	
15 minute winter SV	/4 1.00	3	SVV		107.9	0.837	0.708	11.8//2	
15 minute winter SV	/5 6.00	1	SVV	6	18.0	0.515	0.256	1.2/4/	
15 minute winter SV	6 6.00	Ζ	500	/	54.3	0.935	0.812	4.0650	
15 minute winter SV	/7 1.00	4	SW	8	151.0	0.953	0.871	0.8182	
15 minute winter SV	/8 1.00	5	SW	'9	169.9	1.072	1.082	3.6450	
15 minute winter SV	/9 1.00	6	SW	'10	182.3	1.181	1.202	8.2204	
15 minute winter SV	/10 1.00	7	SW	'11	182.1	1.387	1.201	2.9087	
15 minute winter SV	/11 Flow	r through po	ond SW	12	135.1	0.131	0.009	150.3571	
60 minute summer SV	/12 Hyd	ro-Brake®	SW	13	4.1				67.1
480 minute winter T3	6.00	0	SW	'5	-3.6	-0.148	-0.091	0.0397	
30 minute winter T2	Flow	, through po	nd T3		9.9	0.075	0.697	11.2972	
1440 minute winter C2	Orifi	ce	SW	'10	0.1				
720 minute winter C3	Orifi	ce	SW	'10	0.1				
720 minute winter C1	Orifi	ce	SW	'10	0.3				
2160 minute winter B1	Orifi	ce	SW	4	0.4				
960 minute winter A1	Orifi	ce	SW	'1	0.4				
960 minute winter A2	Orifi	ce	SW	'1	0.1				
600 minute winter A3	Orifi	ce	SW	'1	0.1				
30 minute winter T1	11.0	00	Т2		36.3	1.485	0.307	0.0655	

KAVANAGH BURKE	Kav Cor	anagh B Isulting I	urke Engineer	rs		File: Netv Bart 17/0	D1686 E work: SW osz Kedz 08/2022	01 Drainage / ierski	and W	Page 10	
		•		.		-				00 654	
<u>Results 1</u>	<u>or 10</u>	<u>0 year +:</u>	<u>30% CC (</u>	Critica	al Stor	rm Dur	ation. Lo	owest mass	balance	<u>: 99.65%</u>	
Node Event		US	Peak	Lev	el	Depth	Inflow	Node	Flood	Status	
		Node	(mins)	(m)	(m)	(l/s)	Vol (m³)	(m³)		
2880 minute win	ter	SW1	2700	55.9	90	0.340	2.2	2.7636	0.0000	SURCHARG	iED
2880 minute win	ter	SW2	2700	55.9	89	0.534	4.8	0.6045	0.0000) SURCHARG	ED
15 minute winte	r i	SW3	13	56.0	24	0.423	71.8	5.3263	0.0000) SURCHARG	iED
2880 minute win	ter	SW4	2700	55.9	89	0.709	8.9	6.7712	0.0000) SURCHARG	iED
2880 minute win	ter	SW5	2700	55.9	89	0.349	5.1	1.7984	0.0000) SURCHARG	ED
2880 minute win	ter	SW6	2700	55.9	89	0.489	18.3	3.9823	0.0000	J SURCHARG	ED
2880 minute win	ter	SW7	2700	55.9	89	0.879	17.9	0.9946	0.0000) SURCHARG	iED
2880 minute win	ter	SW8	2700	55.9	89	0.894	16.6	5.8943	0.0000) SURCHARG	ED
2880 minute win	ter	SW9	2700	55.9	89	0.949	18.6	4.0853	0.0000	SURCHARG	iED
2880 minute win	ter	SW10	2700	55.9	89	1.069	18.7	1.2094	0.0000	FLOOD RIS	К
2880 minute win	ter	SW11	2700	55.9	89	1.196	18.4	20.7641	0.0000	ОК	
2880 minute win	ter	SW12	2700	55.9	89	1.199	10.8	1.3564	0.0000) FLOOD RIS	к
15 minute summ	er	SW13	1	54.7	00	0.000	4.1	0.0000	0.0000	о ок	
720 minute wint	er	Т3	780	56.0	55	0.555	2.1	0.0000	0.0000) SURCHARG	iED
2880 minute win	ter	Т2	3060	56.0	37	0.537	11.1	0.0000	0.0000	о ок	
1440 minute win	ter	C2	1050	68.6	57	0.082	0.5	9.8671	0.0000	о ок	
960 minute wint	er	C3	900	68.6	62	0.087	0.3	5.2452	0.0000) OK	
960 minute wint	er	C1	690	68.6	62	0.087	1.2	16.4274	0.0000	о ок	
1440 minute win	ter	B1	1080	68.6	65	0.090	1.8	42.3585	0.0000) OK	
960 minute wint	er	A1	690	68.6	65	0.090	1.5	21.6526	0.0000) OK	
720 minute wint	er	A2	660	68.6	56	0.081	0.9	11.7110	0.0000) OK	
960 minute wint	er	A3	810	68.6	60	0.085	0.3	4.2630	0.0000		
2880 minute win	ter	11	3060	56.0	36	0.436	6.5	1.7470	0.0000	J SURCHARG	ED
Link Event	US		Link		DS	6 0	utflow	Velocity	Flow/Ca	p Link	Discharge
(Outflow) N	lode				Nod	le	(I/s)	(m/s)		Vol (m³)	Vol (m³)
15 minute winter S	W1	1.001			SW2	2	43.0	0.900	0.66	9 4.0535	
15 minute winter S	W2	1.002			SW4	1	37.1	0.821	0.53	1 0.4418	
15 minute winter S	W3	4.000			SW4	1	64.0	1.054	0.99	0 3.4998	
15 minute winter S	W4	1.003			SW7	7	121.0	0.846	0.79	3 11.9403	
15 minute summer S	W5	6.001			SW6	5	22.4	0.549	0.31	9 2.2202	
15 minute summer S	W6	6.002			SW7	7	61.3	0.963	0.91	6 4.6094	
15 minute winter S	W7	1.004			SW8	3	169.9	1.072	0.98	0 0.8182	
15 minute winter S	W8	1.005			SWS	9	194.8	1.230	1.24	0 3.6450	
15 minute winter S	W9	1.006			SW1	10	210.3	1.327	1.38	6 8.5176	
15 minute winter S	W10	1.007			SW1	11	210.7	1.457	1.38	9 3.1403	
15 minute winter S	W11	Flow t	hrough p	ond	SW1	12	159.2	0.138	0.01	1 195.5035	
2880 minute winter S	W12	Hydro-	Brake®		SW1	13	4.3				631.0
24.00 minute summer T	2	C 000			CLAUE	_	24.2	0.000	0.64	2 0.0420	
2160 minute summer	3 า	6.000	hrough "	and	5005	0	-24.3		-0.61	2 0.0439	
30 minute winter	2	Crifico	nrougn p	Jona	15	10	14.2	0.085	0.99	9 14.0131	
960 minute winter	2	Orifice			510/1	10	0.2				
960 minute winter C		Orifice			S\V/1	10	0.1				
1440 minute winter P	1	Orifice			SW/4	1	0.4				
960 minute winter A	1	Orifice			SW1	1	0.4				
720 minute winter A	2	Orifice			SW1	1	0.2				
960 minute winter A	3	Orifice			SW1	1	0.1				
15 minute winter T	1	11.000)		Т2		49.7	1.844	0.42	0 0.0720	

Appendix B – Blue Roof Preliminary Design

			Kavanagh E	Burke			File: D1	L686 D1	BLU	E ROOF (CAL P	age 1		
Kavania	зн Вг	IRKE	Consulting	Engineer	S		Netwo	rk: SW				-		
CONSULTING	ENGINEE		0	U			Bartosz	z Kedzie	rski					
consorring	LINGINEE						17/08/	2022						
		I												
					Des	sign S	ettings							
					<u></u>		<u>cttiligo</u>							
R	ainfall Me	ethodolog	v FSR			Ma	iximum	Time of	Con	centratio	on (min	s) 30.0	0	
R	oturn Dor	rind (vear	\sim 2			ivia	Annun	Mavir	num	Rainfall	(mm/h	r = 50.0	0	
	Addition	al Elow (9	3) <u>2</u> () 20					N/i	inimi		-ity (m/	(c) 1.00		
	Audition		o) 20 Na Scotlan	d and Iro	land			1111				3) 1.00	l Coffite	
	N /	FOR REGIC		iu anu ne	lanu						lion iyµ ai≂h+ (m			
	IVI	10-00 (mm	1) 10.500				IV	inninnun	I BaC		eignt (r	n) 0.20	0	
		капо-	-R U.278					Prefe	errea	Cover D	eptn (r	n) 1.20	0	
			V 0.750					Include	Inter	rmediate	e Grour	na √		
	Time of E	ntry (min	s) 5.00				Enfo	orce best	t prac	ctice des	sign rule	es x		
						Nod	<u>les</u>							
			Name	Area	T of E	E C	over	Diamet	er	Depth				
				(ha)	(mins) L	evel	(mm)		(m)				
				(,	(, -	(m)	()		(,				
			SW1	0,102	5.00	0 56	5.740	120	00	1.090				
			SW/2	5.102	5.00	- 50 56	5.680	120	00	1.225				
			5112	0 168	5.00) 54	5 700	120	00	1 100				
			S/V/J	0.165	5.00	5 50 7 54	5 750	120	00	1 470				
			S/V/5	0.105	5.00	5 50 7 50	5.750	120	00	1.470				
			5///6	0.037	5.00	5 50 7 54	5.700	120	00	1 2 2 0				
			SVV0 S\//7	0.125	5.00	5 50	5.020	120	00	1.520				
			S/V/Q	0.004	5.00) 1 54	5.370	120	00	1.200				
			5000	0.094	5.00	J 50	5.360	120	00	1 200				
			SW3	0.055	5.00	5 50	5.430	120	00	1 210				
			50010			50	5.250	120	00	1.510				
			50011		F 00	כו סרבי	5.200	120	00	1.435				
			50012		5.00	J 50	5.200	120	00	1.435				
			SW13	0.050	5.00	50	5.000	120	00	1.300				
			11	0.059	5.00	J 56	5.700			1.100				
			12			56	5.700			1.200				
			ТЗ		5.00	56	5.700			1.200				
			A1	0.041	5.00	0 70	0.000	120	00	1.425				
			A2	0.020	5.00	0 70	0.000	120	00	1.425				
			A3	0.008	5.00	070	0.000	120	00	1.425				
			B1	0.066	5.00	0 70	0.000	120	00	1.425				
			C1	0.032	5.00	070	0.000	120	00	1.425				
			C2	0.017	5.00	U 70	J.000	120	00	1.425				
			C3	0.009	5.00	J 7(J.000	120	00	1.425				
						<u>Lin</u>	<u>ks</u>							
Nam	e US	DS	Length	ks (mm))/ US	5 IL	DS IL	Fal	I	Slope	Dia	T of C	Rain	
	Node	e Node	(m)	'n	(n	n)	(m)	(m)	(1:X)	(mm)	(mins)	(mm/hr)	
1.00	7 SW10) SW11	22.402	0.60	00 54.9	920	54.870	0.0	50	448.0	450	9.30	38.5	
1.00	5 SW9	SW10	53.788	0.60	0 55.	040	54.920	0.1	20	448.2	450	8.91	39.2	
7.00	0 C1	SW10	18.676	0.60	0 68.	575	55.000) 13.5	75	1.4	225	5.03	49.8	
9.00	D C3	SW10	8.058	0.60	0 68.	575	55.000) 13.5	75	0.6	225	5.01	49.9	
				_				_	_					
		Name	Vel	Cap	Flow	US	D un r	SΣ.	Area	Σ Add	a Pr	0		
			(m/s)	(I/S)	(I/S)	vept	in De	ptn (na)	Inflov	v Dep	otn		
		4 007	0.054	1 - 4 -	120.4	(m)) (n	n)		(I/S)	(m)	m)		
		1.00/	0.954	151./	120.1	0.86		seu 0	0.960	0.0	u 3	504		
		1.006	0.954	151.7	115.1	0.94	10 0.8	36U 0	1.902	0.0	υ 2 0	194		
		/.000	11.242	447.0	5.1	1.20	JU 1.(JUS 0	0.032	0.0	U	1/		
		9.000	17.122	8.080	1.5	1.20	JU 1.(JUS ()	1.009	0.0	U	/		

Name VS DS lengh ks(m) / ks(m)
Name Node Node DS Node Node (m) Length (m) ks (m)/ (m) US IL (m) DS IL (m) Fall (m) Slope (m) Dia (m) Tof C (m) Rain (mm/hr) 8.000 C2 SW10 9.519 0.600 55.095 55.040 0.557 41.3 450 7.97 41.3 1.004 SW7 SW8 51.64 0.600 55.105 51.010 0.107 443.3 450 7.58 42.2 1.003 SW4 SW7 75.360 0.600 55.100 51.40 0.107 443.3 450 7.51 44.4 6.002 SW6 SW7 65.456 0.600 55.500 0.100 448.3 300 6.67 44.3 6.001 SW5 SW4 6.274 0.600 55.450 55.400 0.100 300 6.20 45.9 1.002 SW2 SW4 42.755 0.600 55.450 54.360 0.102 22.5 5.03 49.8 1.001 SW1
Node Node (m) (m) </td
8.000 C2 SW10 9.519 0.600 68.575 55.000 10.055 41.3 450 7.97 41.3 1.004 SW7 SW8 S.164 0.600 55.095 55.100 0.055 418.3 450 7.97 41.3 1.004 SW7 SW8 S.164 0.600 55.200 55.100 0.170 443.3 450 7.51 42.4 6.002 SW6 SW7 65.456 0.600 55.500 55.000 0.140 248.6 300 5.62 47.7 6.001 SW5 SW6 34.804 0.600 55.500 55.000 0.140 248.6 300 5.62 45.9 5.000 B1 SW4 17.556 0.600 55.450 50.00 13.075 1.3 225 5.03 49.8 1.001 SW1 SW4 49.700 0.600 55.450 54.35 51.01 300 6.20 45.9 1.001 SW1 SW2 57.53 0.600 68.575 56.000 12.575 1.7
1.005 SW8 SW8 5.164 0.600 55.095 55.040 0.055 418.3 450 7.57 44.3 1.004 SW7 SW8 5.164 0.600 55.100 55.095 0.015 344.3 450 7.58 42.2 1.003 SW4 SW7 65.456 0.600 55.260 55.260 0.240 272.7 300 6.77 44.3 6.001 SW5 SW6 34.804 0.600 55.500 55.200 -240 272.7 300 6.77 44.3 6.001 SW5 SW6 34.804 0.600 55.400 55.400 -0.29 251.0 300 6.20 45.9 1.002 SW2 SW4 6.274 0.600 55.400 12.075 1.3 225 5.03 49.8 1.001 SW1 SW4 49.700 0.600 55.400 12.575 1.7 225 5.04 49.8 1.001 SW1 SW2 57.563 0.600 55.400 12.575 1.0 225 5.01 <t< td=""></t<>
1.004 3W7 3W8 51.04 0.000 55.10 51.05 0.170 443.3 450 7.53 42.2 1.003 SW4 SW7 65.456 0.600 55.200 55.260 0.240 272.7 300 6.77 44.3 6.001 SW5 SW6 34.804 0.600 55.500 55.260 0.240 272.7 300 6.77 44.3 6.001 SW5 SW6 34.804 0.600 55.500 55.000 -3.9 225 5.03 49.8 1.002 SW2 SW4 6.274 0.600 55.430 0.025 251.0 300 6.20 45.9 5.000 B1 SW4 17.556 0.600 55.430 0.170 292.4 300 5.91 46.8 1.001 SW1 SW2 57.563 0.600 68.575 56.000 12.575 1.7 225 5.04 49.8 1.001 SW1 11.383 0.600 68.575 56.000 12.575 1.0 225 5.01 49.8
1003 5W4 5W7 7.51 42.4 6.002 SW6 SW7 65.456 0.600 55.500 55.260 0.240 272.7 300 6.77 44.3 6.001 SW5 SW6 34.804 0.600 55.500 55.200 -0.500 -3.9 225 5.03 49.8 1.002 SW2 SW4 6.274 0.600 55.455 55.400 1.025 251.0 300 6.20 45.9 5.000 B1 SW4 47.556 0.600 65.455 55.430 0.170 292.4 300 5.91 46.8 1.001 SW1 SW2 57.563 0.600 68.575 56.000 12.575 1.7 225 5.04 49.8 2.000 A2 SW1 12.225 0.600 68.575 56.000 12.575 1.0 225 5.01 49.8 3.000 A1 SW1 11.383 0.600 68.575 56.000 12.575 1.0 225 5.01 49.8 1.000 T1 T2<
6.001 SW5 SW5 34.804 0.600 55.640 55.500 0.140 248.6 300 5.62 47.7 6.000 T3 SW5 1.929 0.600 55.600 55.500 0.140 248.6 300 5.62 47.7 6.000 T3 SW5 1.929 0.600 55.455 55.500 0.025 251.0 300 6.20 45.9 5.000 B1 SW4 17.556 0.600 68.575 55.500 13.075 1.3 225 5.03 49.8 1.001 SW1 SW4 49.700 0.600 55.600 55.455 0.195 295.2 300 6.09 46.2 1.001 SW1 SW1 11.383 0.600 68.575 56.000 12.575 1.0 225 5.04 49.8 2.000 A2 SW1 11.383 0.600 68.575 56.000 12.575 1.0 225 5.01 49.8 1.000 T1 T2 1.954 0.600 54.765 54.700 0.065 <
6.000 T3 SW5 1.929 0.600 55.500 56.000 -0.500 -3.9 225 5.03 49.8 1.002 SW2 SW4 6.274 0.600 55.500 13.075 1.3 225 5.03 49.8 5.000 B1 SW4 17.556 0.600 68.575 55.500 13.075 1.3 225 5.03 49.8 4.000 SW3 SW4 49.700 0.600 55.600 55.430 0.170 292.4 300 5.91 46.8 1.001 SW1 SW2 57.563 0.600 68.575 56.000 12.575 1.7 225 5.04 49.8 2.000 A2 SW1 12.225 0.600 68.575 56.000 12.575 1.0 225 5.01 49.8 3.000 A1 SW1 11.383 0.600 55.500 55.500 0.100 19.5 225 5.01 49.8 10.000 SW12 SW13 7.971 0.600 54.765 54.700 0.065 122.6
1.002 SW2 SW4 6.274 0.600 55.455 55.430 0.025 251.0 300 6.20 45.9 5.000 B1 SW4 17.556 0.600 68.575 55.500 13.075 1.3 225 5.03 49.8 4.000 SW3 SW4 49.700 0.600 55.600 55.455 0.195 295.2 300 6.09 46.2 1.001 SW1 SW2 57.563 0.600 68.575 56.000 12.575 1.7 225 5.04 49.8 2.000 A2 SW1 11.225 0.600 68.575 56.000 12.575 1.0 225 5.01 49.8 1.000 T1 T2 1.954 0.600 55.600 55.500 0.100 19.5 225 5.01 49.8 10.000 SW12 SW13 7.971 0.600 54.765 54.700 0.065 122.6 225 5.11 49.5 10.000 SW12 SW13 7.971 0.600 54.765 54.700 0.065
5.000 B1 SW4 17.556 0.600 68.575 55.500 1.3.075 1.3 225 5.03 49.8 4.000 SW3 SW4 49.700 0.600 55.600 55.430 0.170 292.4 300 5.91 46.8 1.001 SW1 SW2 57.563 0.600 55.600 55.455 0.195 295.2 300 6.09 46.2 1.000 A3 SW1 21.511 0.600 68.575 56.000 12.575 1.0 225 5.02 49.8 2.000 A2 SW1 11.383 0.600 68.575 56.000 12.575 1.0 225 5.01 49.8 3.000 A1 SW1 11.383 0.600 68.575 56.000 12.575 0.9 225 5.01 49.8 10.000 SW12 SW13 7.971 0.600 55.600 55.70 0.100 19.5 225 5.01 49.8 10.000 SW12 SW13 7.971 0.600 51.765 54.700 0.065
4.000 SW3 SW4 49.700 0.600 55.600 55.430 0.170 292.4 300 5.91 46.8 1.001 SW1 SW2 57.563 0.600 55.650 55.455 0.195 295.2 300 6.09 46.2 1.000 A3 SW1 21.511 0.600 68.575 56.000 12.575 1.0 225 5.02 49.8 3.000 A1 SW1 11.383 0.600 68.575 56.00 12.575 0.9 225 5.01 49.8 1.000 T1 T2 1.954 0.600 55.600 55.500 0.100 19.5 225 5.01 49.8 1.000 SW12 SW13 7.971 0.600 54.765 54.700 0.065 122.6 225 5.11 49.8 1.000 SW12 SW13 7.971 0.600 54.765 54.700 0.065 122.6 225 5.11 49.5 1.000 SW12 SW13 15.752 626.3 2.8 1.200 1.005
1.001 SW1 SW2 57.563 0.600 55.650 55.455 0.195 295.2 300 6.09 46.2 1.000 A3 SW1 21.511 0.600 68.575 56.000 12.575 1.7 225 5.04 49.8 2.000 A2 SW1 12.225 0.600 68.575 56.000 12.575 1.0 225 5.01 49.8 3.000 A1 SW1 11.383 0.600 68.575 56.000 12.575 0.9 225 5.01 49.8 10.000 T1 T2 1.954 0.600 55.600 55.500 0.100 19.5 225 5.01 49.8 10.000 SW12 SW13 7.971 0.600 54.765 54.700 0.065 122.6 225 5.11 49.5 10.000 SW12 SW13 7.971 0.600 54.765 54.700 0.065 122.6 225 5.11 49.5 10.000 SW13 7.971 0.600 54.765 Depth Depth (ha)
1.000 A3 SW1 21.511 0.600 68.575 56.000 12.575 1.7 225 5.04 49.8 2.000 A2 SW1 12.225 0.600 68.575 56.000 12.575 1.0 225 5.02 49.8 3.000 A1 SW1 11.383 0.600 68.575 56.000 12.575 0.9 225 5.01 49.8 11.000 T1 T2 1.954 0.600 55.600 55.500 0.100 19.5 225 5.01 49.8 10.000 SW12 SW13 7.971 0.600 54.765 54.700 0.065 122.6 225 5.11 49.5 Name Vel Cap Flow US DS E Area E Add Pro Depth (l/s) (l/s) (l/s) (l/s) (l/s) (l/s) inflow Depth 11 10.05 0.017 0.0 11 1.005 0.940 0.843 0.0 229 6.002 0.947 66.9 25.9 1.020 0.810
2.000 A2 SW1 12.225 0.600 68.575 56.000 12.575 1.0 225 5.02 49.8 3.000 A1 SW1 11.383 0.600 68.575 56.000 12.575 0.9 225 5.01 49.8 11.000 T1 T2 1.954 0.600 55.600 55.500 0.100 19.5 225 5.01 49.8 10.000 SW12 SW13 7.971 0.600 54.765 54.700 0.065 122.6 225 5.11 49.5 Name Vel (m/s) Cap (l/s) Flow (l/s) US (l/s) Depth Depth Depth Depth E Add (ha) Pro 8.000 15.752 626.3 2.8 1.200 1.005 0.017 0.0 11 1.005 0.988 157.1 113.1 0.835 0.940 0.843 0.0 283 1.004 1.090 173.3 102.8 0.810 0.570 0.0 229 6.002 0.947 66.9 25.9 1.020 0.810 0.18
3.000 A1 SW1 11.383 0.600 68.575 56.000 12.575 0.9 225 5.01 49.8 11.000 T1 T2 1.954 0.600 55.600 55.500 0.100 19.5 225 5.01 49.8 10.000 SW12 SW13 7.971 0.600 54.765 54.700 0.065 122.6 225 5.11 49.5 Name Vel Cap Flow US DS E Area E Add Pro (m/s) (l/s) (l/s) Depth Depth Depth (ha) Inflow Depth 1.005 0.988 157.1 113.1 0.835 0.940 0.843 0.0 283 1.004 1.090 173.3 102.8 0.810 0.570 0.0 229 6.002 0.947 66.9 25.9 1.020 0.810 0.180 0.0 129 6.001 0.992 70.2 8.8 0.760 1.020 0.057 0.0 71 6.000 1.000<
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$
NameVel (m/s)Cap (l/s)Flow (l/s)US Depth (m)DS Depth (m)Σ Area (ha)Σ Add InflowPro Depth (l/s)8.00015.752626.32.81.2001.0050.0170.0111.0050.988157.1113.10.8350.9400.8430.02831.0041.090173.3102.80.8100.8350.7500.02296.0020.94766.925.91.0200.8100.1800.01296.0010.99270.28.80.7601.0200.0570.0716.0001.00039.80.00.9750.4750.0000.001.0020.98869.825.40.9251.0200.1700.01255.00011.380452.510.81.2001.0250.0660.024
Name Veri Cup How OS DS Price
Image: Market of the start
8.00015.752626.32.81.2001.0050.0170.0111.0050.988157.1113.10.8350.9400.8430.02831.0041.090173.3102.80.8100.8350.7500.02501.0030.959152.578.51.0200.8100.5700.02296.0020.94766.925.91.0200.8100.1800.01296.0010.99270.28.80.7601.0200.0570.0716.0001.00039.80.00.9750.4750.0000.001.0020.98869.825.40.9251.0200.1700.01255.00011.380452.510.81.2001.0250.0660.024
1.0050.988157.1113.10.8350.9400.8430.02831.0041.090173.3102.80.8100.8350.7500.02501.0030.959152.578.51.0200.8100.5700.02296.0020.94766.925.91.0200.8100.1800.01296.0010.99270.28.80.7601.0200.0570.0716.0001.00039.80.00.9750.4750.0000.001.0020.98869.825.40.9251.0200.1700.01255.00011.380452.510.81.2001.0250.0660.024
1.0041.090173.3102.80.8100.8350.7500.02501.0030.959152.578.51.0200.8100.5700.02296.0020.94766.925.91.0200.8100.1800.01296.0010.99270.28.80.7601.0200.0570.0716.0001.00039.80.00.9750.4750.0000.001.0020.98869.825.40.9251.0200.1700.01255.00011.380452.510.81.2001.0250.0660.024
1.0030.959152.578.51.0200.8100.5700.02296.0020.94766.925.91.0200.8100.1800.01296.0010.99270.28.80.7601.0200.0570.0716.0001.00039.80.00.9750.4750.0000.001.0020.98869.825.40.9251.0200.1700.01255.00011.380452.510.81.2001.0250.0660.024
6.0020.94766.925.91.0200.8100.1800.01296.0010.99270.28.80.7601.0200.0570.0716.0001.00039.80.00.9750.4750.0000.001.0020.98869.825.40.9251.0200.1700.01255.00011.380452.510.81.2001.0250.0660.024
6.0010.99270.28.80.7601.0200.0570.0716.0001.00039.80.00.9750.4750.0000.001.0020.98869.825.40.9251.0200.1700.01255.00011.380452.510.81.2001.0250.0660.024
6.000 1.000 39.8 0.0 0.975 0.475 0.000 0.0 0 1.002 0.988 69.8 25.4 0.925 1.020 0.170 0.0 125 5.000 11.380 452.5 10.8 1.200 1.025 0.066 0.0 24
5.000 11.380 452.5 10.8 1.200 1.025 0.066 0.0 24
5.000 11.380 452.5 10.8 1.200 1.025 0.000 0.0 24
4 000 0 914 64 6 25 6 0 800 1 020 0 168 0 0 131
1.001 0.910 64.3 25.6 0.790 0.925 0.170 0.0 132
1.000 10.080 400.8 1.2 1.200 0.515 0.008 0.0 9
2.000 13.376 531.8 3.2 1.200 0.515 0.020 0.0 13
3.000 13.862 551.2 6.6 1.200 0.515 0.041 0.0 17
11.000 2.974 118.2 9.5 0.875 0.975 0.059 0.0 43
10.000 1.179 46.9 0.0 1.210 1.075 0.000 0.0 0
Simulation Settings
Rainfall Methodology FSR Analysis Speed Detailed
FSR Region Scotland and Ireland Skip Steady State x
Diam Down Time (mins) = 240 $Patio P = 0.278$ Additional Storage (m ³ /ba) = 25.0
Summer CV 0.750 Check Discharge Rate(s) x
Winter CV 0.840 Check Discharge Volume x
Storm Durations
30 120 240 480 720 1440 2880 5760

	Kavanagh Bu	urke	File: D168	6 D1 B	LUE ROOF CAL	Page 3	
Kavanagh Burke	Consulting E	ingineers	Network:	SW			
CONSULTING ENGINEERS			Bartosz Ke	edziersl	ki		
			17/08/202	22			
	tum Daviad	Climate Change	ا م مر م الله الم ۵	A			
R	(vears)	Climate Change		Area		W	
	(years) 100	(CC /8) 40	(A /0)	0	(Q //)	0	
	100	40		U		0	
	<u>N</u>	Iode SW12 Online	Hydro-Brake	e [®] Cont	<u>rol</u>		
F	lap Valve x		Obje	ective	(HE) Minimise	upstream s	torage
Replaces Downstr	eam Link 🔍		Sump Avai	ilable	\checkmark		
Invert	Level (m) 54	1.840	Product Nu	mber	CTL-SHE-0095-	4100-1100	-4100
Design D	epth (m) 1.	100 Min Ou	tlet Diamete	er (m)	0.150		
Design	Flow (I/s) 4.	1 Min Nod	e Diameter ((mm)	1200		
		<u>Node A1 Onlin</u>	e Orifice Cor	<u>ntrol</u>			
F	lap Valve x	Design D	epth (m) (0.100	Discharge C	oefficient	0.600
Replaces Downstr	eam Link 🗸	Design	Flow (I/s) (0.5	-		
Invert	Level (m) 68	3.575 Dian	neter (m) (0.028			
		Node A2 Onlin	e Orifice Cor	<u>ntrol</u>			
F	lan Valve x	Design D	enth (m) (100	Discharge C	oefficient	0.600
Replaces Downstr	eam Link √	Design	Flow (I/s) ().2	Discharge	oemolene	0.000
Invert	Level (m) 68	3.575 Dian	neter (m) (D.017			
		I			1		
		<u>Node A3 Onlin</u>	e Orifice Cor	<u>ntrol</u>			
F	lap Valve x	Design D	epth (m) (0.100	Discharge C	oefficient	0.600
Replaces Downstr	eam Link √	Design	Flow (I/s) (D.1			
Invert	Level (m) 68	3.575 Dian	neter (m) (0.012			
		<u>Node B1 Onlin</u>	e Orifice Cor	<u>ntrol</u>			
F	lap Valve x	Design D	epth (m) (0.100	Discharge C	oefficient	0.600
Replaces Downstr	eam Link 🔍	Design	Flow (l/s) (0.5			
Invert	Level (m) 68	3.575 Dian	neter (m) (0.028			
		<u>Node C1 Onlin</u>	e Orifice Cor	<u>ntrol</u>			
F	lap Valve 🛛 🖌	Design D	epth (m)	0.100	Discharge C	oefficient	0.600
Replaces Downstr	eam Link √	Design	Flow $(1/s)$ ().4	Discharge	bennerent	0.000
Invert	Level (m) 68	3.575 Dian	neter (m) (0.025			
		Node C2 Onlin	e Orifice Cor	<u>ntrol</u>			
_						6 (1)	
F	lap Valve x	Design D	epth (m) ().100 	Discharge C	oefficient	0.600
Replaces Downstr	eam Link √	Design	FIOW (I/S) (J.Z			
invert	Lever (III) bo	Diali		5.017			
		<u>Node C3 Onlin</u>	e Orifice Cor	<u>ntrol</u>			
F	lap Valve x	Design D	epth (m) (0.100	Discharge C	oefficient	0.600
Replaces Downstr	eam Link √	Design	Flow (I/s)	D.1			
Invert	Level (m) 68	3.575 Dian	neter (m) (0.012			

KAVANAGH BURKE	Kavanagh Burke Consulting Engineers	File: D1686 D1 BLUE ROOF CAL Network: SW Bartosz Kedzierski 17/08/2022	Page 4
	Node SW12 Flow throu	gh Pond Storage Structure	
Base Inf Coefficient (m/hr) Side Inf Coefficient (m/hr) Safety Factor	0.00000 0.00000 Inver 2.0 Time to half em	Porosity 0.95 Main Ch t Level (m) 54.765 Main Ch pty (mins)	annel Length (m) 25.000 annel Slope (1:X) 10000.0 Main Channel n 0.015
	lı S	nlets W11	
Depth (m) 0.000 5	Area Inf Area Depth A (m²) (m²) (m) (rea Inf Area Depth Area m²) (m²) (m) (m²) 50.0 0.0 1.210 0.5	i Inf Area (m²) 0.0
	Node T3 Flow throug	n Pond Storage Structure	
Base Inf Coefficient (m/hr) Side Inf Coefficient (m/hr) Safety Factor	0.00000 0.00000 Inver 2.0 Time to half em	Porosity 0.43 Main Ch t Level (m) 55.500 Main Ch pty (mins)	annel Length (m) 60.000 annel Slope (1:X) 10000.0 Main Channel n 0.150
	li	nlets T2	
Depth (m) 0.000 1	Area Inf Area Depth A (m²) (m²) (m) (m) (m) 120.0 0.0 0.800 13	rea Inf Area Depth Area m²) (m²) (m) (m²) 20.0 0.0 0.810 1.0	Inf Area (m ²) 0.0
	Node A1 Depth/A	rea Storage Structure	
Base Inf Coefficien Side Inf Coefficien	t (m/hr) 0.00000 Safety F t (m/hr) 0.00000 Po	actor 2.0 Invert rosity 0.95 Time to half em	t Level (m) 68.575 pty (mins) 0
	Depth Area Inf Area (m) (m²) (m²) 0.000 251.0 0.0	Depth Area Inf Area (m) (m²) (m²) 0.100 251.0 0.0	
	Node A2 Depth/A	rea Storage Structure	
Base Inf Coefficien Side Inf Coefficien	t (m/hr) 0.00000 Safety F t (m/hr) 0.00000 Po	actor 2.0 Invert rosity 0.95 Time to half em	t Level (m) 68.575 pty (mins) 0
	Depth Area Inf Area (m) (m ²) (m ²) 0.000 149.0 0.0	Depth Area Inf Area (m) (m²) (m²) 0.100 149.0 0.0	
	Node A3 Depth/A	rea Storage Structure	
Base Inf Coefficien Side Inf Coefficien	t (m/hr) 0.00000 Safety F t (m/hr) 0.00000 Po	actor 2.0 Invert rosity 0.95 Time to half em	t Level (m) 68.575 pty (mins) 0
	Depth Area Inf Area (m) (m²) (m²) 0.000 51.0 0.0	Depth Area Inf Area (m) (m²) (m²) 0.100 51.0 0.0	
	Node B1 Depth/A	rea Storage Structure	
Base Inf Coefficien Side Inf Coefficien	t (m/hr) 0.00000 Safety F t (m/hr) 0.00000 Po	actor 2.0 Invert rosity 0.95 Time to half em	t Level (m) 68.575 pty (mins) 0

KAVANAGH BURKE	Kavanagh Consulting	Burke Enginee	ers	File: D168 Network: Bartosz Ke 17/08/20	86 D1 Bl SW edziersł 22	LUE ROOF CAL ki	Page 5		
	Depth (m) 0.000	Area (m²) 490.0	Inf Area (m²) 0.0	Depth (m) 0.100	Area (m²) 490.0	Inf Area (m²) 0.0			
		<u>Node (</u>	C1 Depth/Are	ea Storage S	Structu	<u>re</u>			
Base Inf Coefficien Side Inf Coefficien	t (m/hr) C t (m/hr) C	.00000	Safety Fa Pore	octor 2.0 osity 0.95	Ti	Invert me to half emp	Level (m) ty (mins)	68.575 0	
	Depth (m) 0.000	Area (m²) 195.0	Inf Area (m²) 0.0	Depth (m) 0.100	Area (m²) 195.0	Inf Area (m²) 0.0			
		<u>Node (</u>	C2 Depth/Are	ea Storage S	Structu	<u>re</u>			
Base Inf Coefficien Side Inf Coefficien	t (m/hr) C t (m/hr) C	.00000	Safety Fa Pore	ictor 2.0 osity 0.95	Ti	Invert me to half emp	Level (m) ty (mins)	68.575 0	
	Depth (m) 0.000	Area (m²) 125.0	Inf Area (m²) 0.0	Depth (m) 0.100	Area (m²) 125.0	Inf Area (m²) 0.0			
		<u>Node (</u>	C3 Depth/Are	ea Storage S	Structu	re			
Base Inf Coefficien	t (m/br) (00000	Safety Fa	octor 20		Invert	evel (m)	68 575	
Side Inf Coefficien	t (m/hr) C	.00000	Pore	osity 0.95	Ti	me to half emp	ty (mins)	0	
	Depth (m) 0.000	Area (m²) 62.0	Inf Area (m²) 0.0	Depth (m) 0.100	Area (m²) 62.0	Inf Area (m²) 0.0			
			<u>Rai</u>	<u>nfall</u>					
Event	Int (m	Peak tensity	Average Intensity (mm/br)			Event		Peak Intensity (mm/br)	Average Intensity (mm (br)
100 year +40% CC 15 minute sur	nmer 3	57.832	101.254	100 year	+40% (CC 600 minute v	vinter	23.295	9.325
100 year +40% CC 15 minute wir	nter 2	51.110	101.254	100 year	+40% (CC 720 minute s	ummer	30.578	8.195
100 year +40% CC 30 minute sur	nmer 2	47.232	69.958	100 year	+40% (CC 720 minute v	vinter	20.550	8.195
100 year +40% CC 30 minute wir	nter 1	73.496	69.958	100 year	+40% (CC 960 minute s	ummer	25.373	6.681
100 year +40% CC 60 minute sur	nmer 1	11.732	45.384	100 year	+40% (C 960 minute	vinter	18 600	6.681 5.000
100 year +40% CC 120 minute si	immer 1	14.094	43.364	100 year	+40% (C 1440 minute	winter	12 561	5 009
100 year +40% CC 120 minute w	inter	71.961	28.624	100 year	+40% (CC 2160 minute	summer	13.580	3.753
100 year +40% CC 180 minute su	ummer	84.209	21.670	100 year	+40% (CC 2160 minute	winter	9.357	3.753
100 year +40% CC 180 minute w	inter	54.738	21.670	100 year	+40% (CC 2880 minute	summer	11.398	3.055
100 year +40% CC 240 minute su	ummer	67.195	17.758	100 year	+40% (CC 2880 minute	winter	7.660	3.055
100 year +40% CC 240 minute w	inter	44.643	17.758	100 year	+40% (CC 4320 minute	summer	8.731	2.283
100 year +40% CC 360 minute st	ummer	51.962	13.372	100 year	+40% (C 4320 minute	winter	5.750	2.283
100 year +40% CC 360 minute w	inter	53.//b 11 217	10 010	100 year	+40% (C 5760 minute	summer winter	1.246	1.855 1 055
$100 \text{ year } \pm 40\% \text{ CC} 480 \text{ minute st}$	inter	+1.317 77 <u>/</u> 50	10.919	100 year	+40%	$\sim 3700 \text{ minute}$	summer	4.090 6 199	1 570
100 year +40% CC 600 minute si	ummer	34.094	9.325	100 year	+40% (CC 7200 minute	winter	3.994	1.579
				,					

	Kavanagh	Burke		File:	D1686 D1	L BLUE ROC	DF CAL	Page 6
Kavanagh Burke	Consulting	; Enginee	ſS	Netv	vork: SW			
CONSULTING ENGINEERS				Barto	osz Kedzie	erski		
				17/0	8/2022			
Results for	100 year ·	+40% CC	Critical St	orm Dura	ation. Lo	west mass	balance	<u>: 99.41%</u>
_					-			
Node Event	US	Peak	Level	Depth	Inflow	Node	Flood	Status
	Node	(mins)	(m)	(m)	(l/s)	Vol (m³)	(m³)	
15 minute winter	SW1	12	56.354	0.704	47.1	2.4399	0.0000	SURCHARGED
15 minute winter	SW2	12	56.272	0.817	41.4	0.9243	0.0000) SURCHARGED
15 minute winter	SW3	12	56.442	0.842	77.3	4.1647	0.0000) FLOOD RISK
15 minute winter	SW4	12	56.255	0.975	160.0	3.8363	0.0000) SURCHARGED
15 minute winter	SW5	11	56.066	0.426	40.1	1.0523	0.0000) SURCHARGED
15 minute winter	SW6	11	56.086	0.586	76.5	2.0318	0.0000) SURCHARGED
15 minute winter	SW7	12	56.033	0.923	190.5	1.0436	0.0000) SURCHARGED
15 minute winter	SW8	12	55.978	0.883	227.7	2.6045	0.0000) SURCHARGED
2160 minute winter	SW9	2040	55.916	0.876	18.0	1.9156	0.0000) SURCHARGED
2160 minute winter	SW10	2040	55.915	0.995	18.0	1.1258	0.0000) SURCHARGED
2160 minute winter	SW11	2040	55.915	1.147	17.7	1.2977	0.0000	ОК
2160 minute winter	SW12	2040	55.915	1.150	10.8	1.3011	0.0000) FLOOD RISK
15 minute summer	SW13	1	54.700	0.000	3.9	0.0000	0.0000	ОК
960 minute winter	T1	1020	56.027	0.427	17.8	0.5700	0.0000) SURCHARGED
960 minute winter	T2	1020	56.026	0.526	12.9	0.0000	0.0000	ОК
960 minute winter	Т3	1020	56.028	0.528	4.2	0.0000	0.0000) SURCHARGED
960 minute winter	A1	705	68.673	0.098	1.6	23.4538	0.0000	ОК
720 minute winter	A2	675	68.664	0.089	1.0	12.7036	0.0000) ОК
960 minute winter	A3	885	68.668	0.093	0.3	4.6480	0.0000) ОК
2160 minute winter	B1	1560	68.674	0.099	1.5	46.3339	0.0000	ОК
720 minute winter	C1	555	68.672	0.097	1.5	18.0661	0.0000	ОК
960 minute winter	C2	735	68.663	0.088	0.7	10.5252	0.0000) ОК
960 minute winter	C3	915	68.670	0.095	0.4	5.7146	0.0000	ОК

Link Event	US	Link	DS	Outflow	Velocity	Flow/Cap	Link	Discharge
(Outflow)	Node		Node	(I/s)	(m/s)		Vol (m³)	Vol (m³)
15 minute winter	SW1	1.001	SW2	41.4	0.893	0.644	4.0535	
15 minute summer	SW2	1.002	SW4	41.4	0.805	0.593	0.4418	
15 minute winter	SW3	4.000	SW4	63.5	1.038	0.983	3.4998	
15 minute winter	SW4	1.003	SW7	161.2	1.017	1.057	11.9403	
15 minute winter	SW5	6.001	SW6	23.0	0.518	0.328	2.4509	
15 minute summer	SW6	6.002	SW7	61.4	0.966	0.917	4.6094	
15 minute winter	SW7	1.004	SW8	190.3	1.201	1.098	0.8182	
15 minute winter	SW8	1.005	SW9	224.8	1.419	1.431	3.6450	
15 minute winter	SW9	1.006	SW10	246.5	1.556	1.626	8.5224	
15 minute winter	SW10	1.007	SW11	247.1	1.599	1.629	3.2559	
15 minute winter	SW11	Flow through pond	SW12	163.1	0.171	0.014	149.5816	
30 minute winter	SW12	Hydro-Brake [®]	SW13	4.1				61.4
30 minute winter	T1	11.000	T2	50.0	1.581	0.423	0.0777	
30 minute winter	T2	Flow through pond	Т3	14.5	0.085	1.021	18.7360	
15 minute winter	Т3	6.000	SW5	-39.5	-3.545	-0.994	0.0439	
960 minute winter	A1	Orifice	SW1	0.5				
720 minute winter	A2	Orifice	SW1	0.2				
960 minute winter	A3	Orifice	SW1	0.1				
2160 minute winter	B1	Orifice	SW4	0.5				
720 minute winter	C1	Orifice	SW10	0.4				
960 minute winter	C2	Orifice	SW10	0.2				
960 minute winter	C3	Orifice	SW10	0.1				

Appendix C - Foul Sewer Network Design

CAVANAGH	H BURKE NGINEERS						ile: D168 Network: Bartosz Ke L7/08/202	6 D1 D Foul edziersl 22	nd W Pa	age 1		
					<u>[</u>	Design Se	<u>ttings</u>					
		Freque	ency of	use (kD	U) 0.5	0	Mini	imum \	/elocity (r	n/s) 1.(00	
	Flow pe	r dwellii	ng per c	lay (l/da	ay) 270	00		Con	nection T	ype Lev	vel Soffits	S
		Dome	estic Flo	w (l/s/h	na) 0.0	M	linimum E	Backdro	op Height	(m) 0.2	200	
		Indus	trial Flo	w (l/s/h	na) 0.0		Preferr	red Cov	er Depth	(m) 1.2	200	
		Ac	lditiona	l Flow (%) 0		Include Ir	nterme	diate Gro	und √		
						<u>Node</u>	<u>es</u>					
				Name	Units	Cover	Manho	ole D	epth			
						Level (m)	Туре	e ((m)			
				F1	234.0	56.720	Foul	1	.120			
				F2		56.680	Foul	-	.780			
				F3	42.0	56.600	Foul	0	.900			
				F4	318.0	56.750	Foul	1	.900			
				F5	30.0	56.730	Foul	0	.930			
				F7	48.0	56.800	Foul	1	.580			
				F8	0.0	56.360	Foul	1	.960			
				F9	30.0	56.360	Foul	1	.990			
				F10	150.0	56.450	Foul	2	.220			
				F11		56.290	Foul	2	.350			
				F12		56.500	Foul	2	.640			
				F13		56.500	Foul	2	.690			
				F14 E15		50.500	Foul	2	.710			
				FIJ		50.500	FUUI	2	.790			
						<u>Links</u>	5					
	Name	US	DS	Len	gth ks	(mm) /	US IL	DS II	- Fall	Slope	Dia	
	1 000	Node	Node	e (m	1) 	n 1 500	(m)	(m)	(m)	(1:X)	(mm)	
	1.009	F14 E12	F15	14.5	92 140	1.500	53.790	53./1) 182.4	225	
	1.008	F13 E12	F14 E12	Z.4 7 C	148 120	1.500	53.810	52.79) 122.4	225	
	1 006	F11	F12	14 5	55 518	1.500	53 940	53.86) 1815	225	
	1.005	F10	F11	54.2	285	1.500	54.230	53.94	0 0.290) 187.2	225	
	1.004	F9	F10	24.2	246	1.500	54.370	54.23	0 0.140) 173.2	225	
	1.003	F8	F9	5.1	.63	1.500	54.400	54.37	0 0.030) 172.1	225	
	1.002	F4	F8	75.0)57	1.500	54.850	54.40	0 0.450	166.8	225	
	3.001	F7	F8	65.3	858	1.500	55.220	54.47	5 0.745	5 87.7	150	
	3.000	F5	F7	34.6	533	1.500	55.800	55.22	0 0.580) 59.7	150	
Name	Vel	Cap I	Flow	US	DS	Σ Area	Σ Dwel	lings	Σ Units	Σ Add	Pro	Pro
	(m/s)	(I/s)	(I/s)	Depth	Depth	(ha)	(ha)	(ha)	Inflow	Depth	Velocity
				(m)	(m)					(ha)	(mm)	(m/s)
1.009	0.848	33.7	14.6	2.485	2.565	0.000		0	852.0	0.0	103	0.817
1.008	1.037	41.2	14.6	2.465	2.485	0.000		0	852.0	0.0	93	0.950
1.007	0.910	36.2	14.6	2.415	2.465	0.000		0	852.0	0.0	100	0.862
1.006	0.851	33.8	14.6	2.125	2.415	0.000		0	852.0	0.0	103	0.819
1.005	0.837	33.3	14.6	1.995	2.125	0.000		0	852.0	0.0	104	0.810
1.004	0.8/1	34.b 24.7	13.2 12.0	1.705 1.705	1.995	0.000		U	/02.0	0.0	96	0.812
1 003	0.0/4 0.227	54.7 25 2	12.U	1.733 1.675	1.705 1.725	0.000		0	5012.U	0.0	95 01	U 8UE 0.911
1.002 2 001	0.001	33.3 16 5	12.2 4.4	1 <u>4</u> 20	1 725	0.000		0 N	594.U 78 N	0.0	22	0.605 N 791
3.001	0.933 1 125	20.3	4.4 27	1.43U	1 /20	0.000		0	20.0	0.0	در مر	0.791
5.000	1.122	20.1	۷.۷	0.760	1.430	0.000		0	50.0	0.0	20	0.795

NAGH	BUR	KE	Consult	ing Eng	gineers		Network Bartosz I 17/08/20	: Foul Kedziers 022	ski				
						<u>Link</u>	<u>s</u>						
	Name	e U No	IS D ode No	S Lo de	ength ks (m)	(mm) / n	US IL (m)	DS I (m)	IL I) (Fall m)	Slop (1:X	e Dia) (mm)	
	1.001	F2	F4		6.424	1.500	54.900	54.8	50 0.	050	128.	5 225	
	2.000 1.000	F3 F1	F4 F2	5 5	0.459 9.313	1.500 1.500	55.700 55.600	54.92 54.90	25 0. 00 0.	775 700	65. 84.	1 150 7 225	
Name	Vel (m/s)	Cap (I/s)	Flow (I/s)	US Dept (m)	DS h Depth (m)	Σ Area (ha)	Σ Dwe (h	ellings a)	Σ Uni (ha)	ts)	Σ Add Inflow (ha)	Pro Depth (mm)	Pro Velocity (m/s)
1.001	1.012	40.2	7.6	1.55	5 1.675	0.000		0	234	.0	0.0	66	0.778
2.000	1.087	19.2	3.2	0.75	0 1.675	0.000		0	42	.0	0.0	42	0.806
1.000	1.247	49.6	7.6	0.89	5 1.555	0.000		0	234	.0	0.0	59	0.900
					<u>M</u>	anhole S	<u>chedule</u>						
Node	East (m	ing 1)	Nort (n	hing n)	CL (m)	Depth (m)	Dia (mm)	Conr	nectior	ıs	Link	IL (m)	Dia (mm)
F1	69785	6.661	73222	6.285	56.720	1.120	1200						
								Ģ)				
52	60704	1 400	72240	0.047	FC C00	1 700	1200	0		0	1.000	55.600	225
FZ	69784	1.483	/3210	8.947	50.080	1.780	1200	₀ ←	5	T	1.000	54.900	225
										0	1.001	1 54.900	225
F3	69782	3.336	73211	.9.869	56.600	0.900	1200	\mathcal{C}	5				
										0	2.000	55.700	150
F4	69783	5.059	73216	8.947	56.750	1.900	1200			1	2.000	54.925	150
								•	2	2	1.002	1 54.850	225
E 5	60778	2 6 8 1	72011	1 260	56 720	0 030	1200	1		0	1.002	2 54.850	225
. 5	03770	5.001	, 9211	205	50.750	0.550	1200	0 ←)				
										0	3.000	55.800	150
F7	69775	0.037	73212	2.488	56.800	1.580	1200	Ċ		1	3.000	55.220	150
										0	3.002	1 55.220	150
F8	69776	2.136	73218	6.716	56.360	1.960	1200			1	3.002	1 54.475	150
								•	2	2	1.002	2 54.400	225
50	COTTT		3001-	0.00-	FC 0.55	4 000	4000	1		0	1.003	3 54.400	225
F9	69775	7.455	/3218	8.895	56.360	1.990	1200	°	\sum_{1}	1	1.003	3 54.370	225
										0	1.004	4 54.370	225
F10	69774	3.779	73220	8.916	56.450	2.220	1200		X [°]	1	1.004	4 54.230	225
									1	0	1.005	5 54 2 30	225

	Kavanagh Burke	File: D1686 D1 Drainage and W	Page 3
Kavanagh Burkf	Consulting Engineers	Network: Foul	
CONSULTING ENGINEERS		Bartosz Kedzierski	
		17/08/2022	

Manhole Schedule

Node	Easting (m)	Northing (m)	CL (m)	Depth (m)	Dia (mm)	Connections	Link	IL (m)	Dia (mm)
F11	697780.996	732248.435	56.290	2.350	1200	1	1.005	53.940	225
						¹ 0	1.006	53.940	225
F12	697795.393	732250.304	56.500	2.640	1200	1	1.006	53.860	225
						0	1.007	53.860	225
F13	697802.598	732246.969	56.500	2.690	1200		1.007	53.810	225
						° 0	1.008	53.810	225
F14	697803.309	732244.627	56.500	2.710	1200		1.008	53.790	225
						0	1.009	53.790	225
F15	697817.577	732241.568	56.500	2.790	1200	1	1.009	53.710	225

• Appendix D - Soakaway Test Report

Soakaway Test & Design

Client: Garyaron Homes Ltd.

Site: Residential Development at Glencarrig, Celbridge, Co. Kildare

chartered association of building engineers REGISTERED ARCHITECT C.I. 2019 Iner RIAI

J. MADDEN, Chartered Building Engineer, B. ENG, EUR. Ing, Grad. Dip. Arb. Law, P. Grad. Dip. Fire, Tech Dip, C.ENG, M.I.E.I., M.I.F.E., M.C.A.B.E. P. MARTIN, Chartered Construction Manager, M.A., MSc., (Hons) E. Mgt., MSc., (Hons) aBIMM, BSc., (SURV.) C.Econ. & Mgt., Eng Tech M.I.E.I., M.C.I.O.B., I.B.C.I. P. MOLLOY, B. ENG, AFL, M.I.E.I., D. MARSHALL, Ba(Hons), ARCH Deg, Arch. Tech Dip, M.R.I.A.I., N. BARRETT, BSC. (Hons) Arch. Tech, PG DiP Garden Designer D. LYNCH, BSC. (Hons) Arch. Tech, I. JARON, B.S. ARCH., U.A.P., M. DAPITANON, B.S. ARCH., U.A.P., G. JASO, B.S. ENG., Mem. P.I.C.E.

Chartered Engineers • Registered Architects • Chartered Surveyors

INTRODUCTION 1.

At the proposed Development at Glencarrig, Celbridge, Co. Kildare it will be necessary to dispose of the storm water from the site by means of a soakaway system on site.

A site investigation has been carried out to assess the suitability of the sub-soils for this purpose and to determine soakaway requirements.

2. SITE INVESTIGATION

4 No. test holes were excavated on the site in order to ascertain subsoil conditions and the depth to groundwater.

3. **TESTING**

To determine the soil infiltration rate, water was poured into the test holes and records made of the fall in water level against time. Testing was continued until a constant rate of fall was established.

From the rate of fall in water level and measurement of the average internal surface area of the test pits over the test zone, the soil infiltration rate "f" was calculated.

The average infiltration rate (f value) in the area of trial pit SA1 was determined to be 0.00002702 m/sec.

DESIGN CALCULATIONS 4.

SOAKAWAYS 4.1

The soakaways have been designed in accordance with "BRE Digest 365 - Design of soakaways".

The digest suggests that a soakaway should be designed to accommodate the immediate stormwater run-off and permit infiltration into the surrounding ground at a sufficient rate so as to provide the necessary capacity to receive run-off from a subsequent storm.

For this analysis, rainfall statistics have been obtained from Met Eireann and calculations have been carried out, based on a 100 year return period, for a run off area for the total development will be 11473m2.

J. MADDEN, Chartered Building Engineer, B. ENG, EUR, Ing, Grad, Dip, Arb, Law, P. Grad, Dip, Fire, Tech Dip, C.ENG, M.I.E.I., M.I.F.E., M.C.A.B.E. P. MARTIN, Chartered Construction Manager, M.A., MSc., (Hons) E. Mgt., MSc., (Hons) aBIMM, BSc., (SURV.) C.Econ. & Mgt., Eng Tech M.I.E.I., M.C.I.O.B., I.B.C.I. P. MOLLOY, B. ENG, AFL, M.I.E.I., D. MARSHALL, Ba(Hons), ARCH Deg, Arch. Tech Dip, M.R.I.A.I., N. BARRETT, BSC. (Hons) Arch. Tech, PG DiP Garden Designer D. LYNCH, BSC. (Hons) Arch. Tech, I. JARON, B.S. ARCH., U.A.P., M. DAPITANON, B.S. ARCH., U.A.P., G. JASO, B.S. ENG., Mem. P.I.C.E.

3	+35344 93 44347	🗹 info@joh	nmadden.ie
3	+35344 93 47868	🕀 www.joh	nmadden.ie

Chartered Engineers • Registered Architects • Chartered Surveyors

The required soakaway capacity is obtained by calculating the inflow and outflow for a range of storm durations, and choosing the storm duration which gives the maximum storage requirement.

For analysis purposes, a trench 4m wide and 2.7m deep has been assumed. The invert level of the pipe into the soakaway is taken to be 0.7m below ground level, which would give an effective depth of 2.0m for the soakaway system.

5. RECOMMENDATIONS

5.1 SOAKAWAYS

Using above assumptions, the required soakaway sizes are as follows:

4 no. soakaways to be provides throughout the development with a combined storage capacity of 237.04m3.

It is noted that soakaways can become clogged with silt through time and regular monitoring of silt levels must be carried out. The use of a silt trap manhole at the head of a soakaway can, however, greatly reduce the inflow of silt and suspended solids.

The construction of the soakaway trench should be supervised and certified by a suitably qualified civil engineer. The rounded gravel used for the soakaway must have a certified void ratio of 0.30. Soakaways must be located a minimum of 5.0m from any structure/foundation and a minimum of 3.0m from any boundary.

RIAI

J. MADDEN, Chartered Building Engineer, B. ENG, EUR. Ing, Grad. Dip. Arb. Law, P. Grad. Dip. Fire, Tech Dip, C.ENG, M.I.E.I., M.I.F.E., M.C.A.B.E. P. MARTIN, Chartered Construction Manager, M.A., MSc., (Hons) E. Mgt., MSc., (Hons) aBIMM, BSc., (SURV.) C.Econ. & Mgt., Eng Tech M.I.E.I., M.C.I.O.B., I.B.C.I. P. MOLLOY, B. ENG, AFL, M.I.E.I., D. MARSHALL, Ba(Hons), ARCH Deg, Arch. Tech Dip, M.R.I.A.I., N. BARRETT, BSC. (Hons) Arch. Tech, PG DiP Garden Designer D. LYNCH, BSC. (Hons) Arch. Tech, I. JARON, B.S. ARCH., U.A.P., M. DAPITANON, B.S. ARCH., U.A.P., G. JASO, B.S. ENG., Mem. PI.C.E.

Appendix 1 Calculations

chartered association of building engineers

REGISTERED ARCHITECT

2019

RIAI

J. MADDEN, Chartered Building Engineer, B. ENG, EUR. Ing, Grad. Dip. Arb. Law, P. Grad. Dip. Fire, Tech Dip, C.ENG, M.I.E.I., M.I.F.E., M.C.A.B.E. P. MARTIN, Chartered Construction Manager, M.A., MSc., (Hons) E. Mgt., MSc., (Hons) aBIMM, BSc., (SURV.) C.Econ. & Mgt., Eng Tech M.I.E.I., M.C.I.O.B., I.B.C.I. P. MOLLOY, B. ENG, AFL, M.I.E.I., D. MARSHALL, Ba(Hons), ARCH Deg, Arch. Tech Dip, M.R.I.A.I., N. BARRETT, BSC. (Hons) Arch. Tech, PG DiP Garden Designer D. LYNCH, BSC. (Hons) Arch. Tech, I. JARON, B.S. ARCH., U.A.P., M. DAPITANON, B.S. ARCH., U.A.P., G. JASO, B.S. ENG., Mem. PI.C.E. Name: A&G Residential Address: Celbridge Irish Grid Coor.: 253711 257998 FI Planning Ref: 21/133 Date: 17/08/2022 Test Hole 01

Trial Hole Dimensions (From Ground Level)

2 m deep 1.1 m wide 1 m long

Effective Storage Depth 1.0m Take $V_{free}\,$ at 30% Trial Hole Was Filled From Empty on 7^{th} & 8^{th}

Trail Hole Recorded Levels

Test Date	Test Time	Water Level Within Trial Hole
09/08/2022	12:30	2
09/08/2022	13:30	1.73
09/08/2022	14:30	1.35
09/08/2022	15:30	1.225
09/08/2022	16:30	1.115
09/08/2022	17:30	1.025
09/08/2022	18:30	0.955
09/08/2022	19:30	0.905

Field Obervation From Trial Hole Shown On Figure 1 On Next Page

VP75 - VP25 = 1.1 x 1.0 x (1.75 - 1.25) = 0.55m³

as50 = $(1.1 \times 0.5 \times 2) + (1.0 \times 0.5 \times 2) + (1.1 \times 1.0) = 3.2m^{2}$

tp75 - 25 = (162 - 56) = 106 min

Figure 1:

Soil Infiltration Rate :

f = 0.55 = 2.702E-05 m/sec 3.2 x 106 x 60

Soakaway Sizing

From Rainfall Return Period Tables - M5 - 60 = 15.9 Z1 Growth Rate & Z2 Growth Rate Taken From Table 1 & 2 in BRE 365

Imperable Area From Roof, Footpaths & Roadway $11473m^2$ Total Take it 4 No. Soakholes Will Be Provided On Site = $11473/4 = 2868m^2$

Inflow \rightarrow I = A x R

Outflow \rightarrow O = as50 x f x D

Soakaway \rightarrow I - O = S \rightarrow See table below

Duration	Growth	M5 Rainfall	Growth	M100 Rainfall	Inflow	Outflow	Storage
(D/min)	Factor Z1	(mm)	Factor Z2	(mm)	(m ³)	(m ³)	Required (m ³)
5	0.36	5.72	1.91	10.93	31.36	0.03	31.33
10	0.51	8.11	1.97	15.97	45.82	0.05	45.76
15	0.62	9.86	1.97	19.42	55.70	0.08	55.62
30	0.79	12.56	1.97	24.75	70.97	0.16	70.81
60	1	15.9	1.93	30.69	88.01	0.31	87.70
120	1.22	19.40	1.89	36.66	105.15	0.62	104.52
240	1.48	23.53	1.85	43.53	130.60	1.25	129.36
360	1.67	26.55	1.82	48.33	138.60	1.87	136.73
600	1.9	30.21	1.78	53.77	154.22	3.11	151.11
1440	2.42	38.48	1.72	66.18	189.81	7.47	182.34

Required Storage (Sreq) = 182.34 + 30% Climate Change \rightarrow 237.04m³

To Find L - Using Soakaway Storage Volume (Sact)using Trial Hole Width and Depth with 30% climate change at void ratio $30\% \rightarrow L x d x w x V$ free = 4.66m3

→ To Find L Design =	237.4	=	98.92 m
	2 x 4 x 0.3		

Therefore Taking Soakhole Dimensions For 100m² Area Capture can be interpreted as Follows.

L= 98.92m	
w=	4
d=	2 (Note Base Of Soakhole 2.000m Below Ground Cover)

Name: A&G Residential Address: Celbridge Irish Grid Coor.: 253711 257998 FI Planning Ref: 21/133 Date: 17/08/2022 Test Hole 02

Trial Hole Dimensions (From Ground Level)

2 m deep 1.1 m wide 1 m long

Effective Storage Depth 1.0m Take $V_{free}\,$ at 30% Trial Hole Was Filled From Empty on 7^{th} & 8^{th}

Trail Hole Recorded Levels

Test Date	Test Time	Water Level Within Trial Hole
09/08/2022	12:30	2
09/08/2022	13:30	1.75
09/08/2022	14:30	1.425
09/08/2022	15:30	1.275
09/08/2022	16:30	1.115
09/08/2022	17:30	1.055
09/08/2022	18:30	0.985
09/08/2022	19:30	0.935

Field Obervation From Trial Hole Shown On Figure 1 On Next Page

VP75 - VP25 = 1.1 x 1.0 x (1.75 - 1.25) = 0.55m³

as50 = (1.1 x 0.5 x 2) + (1.0 x 0.5 x 2) + (1.1 x 1.0) = 3.2m²

tp75 - 25 = (190 - 60) 130 min

Soil Infiltration Rate :

f = 0.55 = 2.204E-05 m/sec 3.2 x 130 x 60

Soakaway Sizing

From Rainfall Return Period Tables - M5 - 60 = 15.9 Z1 Growth Rate & Z2 Growth Rate Taken From Table 1 & 2 in BRE 365

Imperable Area From Roof, Footpaths & Roadway $11473m^2$ Total Take it 4 No. Soakholes Will Be Provided On Site = $11473/4 = 2868m^2$

Inflow \rightarrow I = A x R

Outflow \rightarrow O = as50 x f x D

Soakaway \rightarrow I - O = S \rightarrow See table below

Duration	Growth	M5 Rainfall	Growth	M100 Rainfall	Inflow	Outflow	Storage
(D/min)	Factor Z1	(mm)	Factor Z2	(mm)	(m ³)	(m ³)	Required (m ³)
5	0.36	5.72	1.91	10.93	31.36	0.02	31.33
10	0.51	8.11	1.97	15.97	45.82	0.04	45.77
15	0.62	9.86	1.97	19.42	55.70	0.06	55.63
30	0.79	12.56	1.97	24.75	70.97	0.13	70.84
60	1	15.9	1.93	30.69	88.01	0.25	87.76
120	1.22	19.40	1.89	36.66	105.15	0.51	104.64
240	1.48	23.53	1.85	43.53	130.60	1.02	129.59
360	1.67	26.55	1.82	48.33	138.60	1.52	137.08
600	1.9	30.21	1.78	53.77	154.22	2.54	151.68
1440	2.42	38.48	1.72	66.18	189.81	6.09	183.72

Required Storage (Sreq) = 183.72 + 30% Climate Change $\rightarrow 238.84$ m³

To Find L - Using Soakaway Storage Volume (Sact)using Trial Hole Width and Depth with 30% climate change at void ratio $30\% \rightarrow L x d x w x V$ free = 4.66m3

→ To Find L Design =	238.84	=	99.52 m
	2 x 4 x 0.3		

Therefore Taking Soakhole Dimensions For 100m² Area Capture can be interpreted as Follows.

L= 99.52m	
w=	4
d=	2 (Note Base Of Soakhole 2.000m Below Ground Cover)

Name: A&G Residential Address: Celbridge Irish Grid Coor.: 253711 257998 FI Planning Ref: 21/133 Date: 17/08/2022 Test Hole 03

Trial Hole Dimensions (From Ground Level)

2 m deep 1.1 m wide 1 m long

Effective Storage Depth 1.0m Take $V_{free}\,$ at 30% Trial Hole Was Filled From Empty on 7^{th} & 8^{th}

Trail Hole Recorded Levels

Test Date	Test Time	Water Level Within Trial Hole
09/08/2022	12:30	2
09/08/2022	13:30	1.7
09/08/2022	14:30	1.42
09/08/2022	15:30	1.27
09/08/2022	16:30	1.15
09/08/2022	17:30	1.05
09/08/2022	18:30	0.96
09/08/2022	19:30	0.89

Field Obervation From Trial Hole Shown On Figure 1 On Next Page

VP75 - VP25 = 1.1 x 1.0 x (1.75 - 1.25) = 0.55m³

as50 = (1.1 x 0.5 x 2) + (1.0 x 0.5 x 2) + (1.1 x 1.0) = 3.2m²

tp75 - 25 = (194-55) 139 min

Soil Infiltration Rate :

f = 0.55 = 2.061E-05 m/sec 3.2 x 106 x 60

Soakaway Sizing

From Rainfall Return Period Tables - M5 - 60 = 15.9 Z1 Growth Rate & Z2 Growth Rate Taken From Table 1 & 2 in BRE 365

Imperable Area From Roof, Footpaths & Roadway $11473m^2$ Total Take it 4 No. Soakholes Will Be Provided On Site = $11473/4 = 2868m^2$

Inflow \rightarrow I = A x R

Outflow \rightarrow O = as50 x f x D

Soakaway \rightarrow I - O = S \rightarrow See table below

Duration	Growth	M5 Rainfall	Growth	M100 Rainfall	Inflow	Outflow	Storage
(D/min)	Factor Z1	(mm)	Factor Z2	(mm)	(m ³)	(m ³)	Required (m ³)
5	0.36	5.72	1.91	10.93	31.36	0.02	31.34
10	0.51	8.11	1.97	15.97	45.82	0.04	45.78
15	0.62	9.86	1.97	19.42	55.70	0.06	55.64
30	0.79	12.56	1.97	24.75	70.97	0.12	70.85
60	1	15.9	1.93	30.69	88.01	0.24	87.77
120	1.22	19.40	1.89	36.66	105.15	0.47	104.67
240	1.48	23.53	1.85	43.53	130.60	0.95	129.65
360	1.67	26.55	1.82	48.33	138.60	1.42	137.18
600	1.9	30.21	1.78	53.77	154.22	2.37	151.85
1440	2.42	38.48	1.72	66.18	189.81	5.70	184.11

Required Storage (Sreq) = 184.11 + 30% Climate Change $\rightarrow 239.34m^3$

To Find L - Using Soakaway Storage Volume (Sact)using Trial Hole Width and Depth with 30% climate change at void ratio $30\% \rightarrow L x d x w x V$ free = 4.66m3

→ To Find L Design =	239.34	=	99.73 m
	2 x 4 x 0.3		

Therefore Taking Soakhole Dimensions For 100m² Area Capture can be interpreted as Follows.

L= 99.73m	
w=	4
d=	2 (Note Base Of Soakhole 2.000m Below Ground Cover)

Name: A&G Residential Address: Celbridge Irish Grid Coor.: 253711 257998 FI Planning Ref: 21/133 Date: 17/08/2022 Test Hole 04

Trial Hole Dimensions (From Ground Level)

2 m deep 1.1 m wide 1 m long

Effective Storage Depth 1.0m Take $V_{free}\,$ at 30% Trial Hole Was Filled From Empty on 7^{th} & 8^{th}

Trail Hole Recorded Levels

Test Date	Test Time	Water Level Within Trial Hole
09/08/2022	12:30	2
09/08/2022	13:30	1.73
09/08/2022	14:30	1.46
09/08/2022	15:30	1.22
09/08/2022	16:30	1.02
09/08/2022	17:30	0.86
09/08/2022	18:30	0.66
09/08/2022	19:30	0.58

Field Obervation From Trial Hole Shown On Figure 1 On Next Page

VP75 - VP25 = 1.1 x 1.0 x (1.75 - 1.25) = 0.55m³

as50 = (1.1 x 0.5 x 2) + (1.0 x 0.5 x 2) + (1.1 x 1.0) = 3.2m²

tp75 - 25 = (240-120) 120 min

Soil Infiltration Rate :

f = 0.55 = 2.387E-05 m/sec 3.2 x 120 x 60

Soakaway Sizing

From Rainfall Return Period Tables - M5 - 60 = 15.9 Z1 Growth Rate & Z2 Growth Rate Taken From Table 1 & 2 in BRE 365

Imperable Area From Roof, Footpaths & Roadway $11473m^2$ Total Take it 4 No. Soakholes Will Be Provided On Site = $11473/4 = 2868m^2$

Inflow \rightarrow I = A x R

Outflow \rightarrow O = as50 x f x D

Soakaway \rightarrow I - O = S \rightarrow See table below

Duration	Growth	M5 Rainfall	Growth	M100 Rainfall	Inflow	Outflow	Storage
(D/min)	Factor Z1	(mm)	Factor Z2	(mm)	(m ³)	(m ³)	Required (m ³)
5	0.36	5.72	1.91	10.93	31.36	0.02	31.33
10	0.51	8.11	1.97	15.97	45.82	0.05	45.77
15	0.62	9.86	1.97	19.42	55.70	0.07	55.63
30	0.79	12.56	1.97	24.75	70.97	0.14	70.83
60	1	15.9	1.93	30.69	88.01	0.27	87.74
120	1.22	19.40	1.89	36.66	105.15	0.55	104.60
240	1.48	23.53	1.85	43.53	130.60	1.10	129.50
360	1.67	26.55	1.82	48.33	138.60	1.65	136.95
600	1.9	30.21	1.78	53.77	154.22	2.75	151.47
1440	2.42	38.48	1.72	66.18	189.81	6.60	183.21

Required Storage (Sreq) = 183.21 + 30% Climate Change \rightarrow 238.17m³

To Find L - Using Soakaway Storage Volume (Sact)using Trial Hole Width and Depth with 30% climate change at void ratio $30\% \rightarrow L x d x w x V$ free = 4.66m3

→ To Find L Design =	238.17	=	99.24 m
	2 x 4 x 0.3		

Therefore Taking Soakhole Dimensions For 100m² Area Capture can be interpreted as Follows.

L= 99.24m	
w=	4
d=	2 (Note Base Of Soakhole 2.000m Below Ground Cover)

Appendix E - Receiving SW Network Capacity and Condition Check
Part 1 of 2 of the capacity check performed on the existing drainage network in Hazelhatch residential development receiving the restricted discharge from the proposed site. For area take-off refer to Drg. Ref. D1686-D3 and for original survey of existing SW network refer to J&L Surveys Limited drawing included in this planning application. This part includes all nodes up to existing hydrobrake in manhole S10

Design Settings Rainfall Methodology FSR Maximum Time of Concentration (mins) 30.00 Return Period (years) 50.0 17 Maximum Rainfall (mm/hr) Additional Flow (%) 20 Minimum Velocity (m/s) 1.00 FSR Region Scotland and Ireland Connection Type Level Soffits M5-60 (mm) 16.500 Minimum Backdrop Height (m) 0.200 Ratio-R 0.278 1.200 Preferred Cover Depth (m) CV 0.750 Include Intermediate Ground \checkmark Time of Entry (mins) 7.00 Enforce best practice design rules x **Nodes** T of E Add Cover Diameter Depth Name Area Restricted discharge (ha) (mins) Inflow Level (mm) (m) from proposed (m) (I/s) development added 7.00 56.022 S1 0.524 1350 1.247 4.1 S2 0.674 7.00 56.512 1350 2.727 S3 2.810 56.370 1350 S4 56.280 1350 2.740 S5 1.963 7.00 2.458 55.558 1500 S6 55.901 3.547 1500 S7 56.339 1500 4.263

Links

56.712

56.766

56.364

1500

1500

1500

4.832 4.817

4.860

Impervious area of

details

4.26ha included. Refer

to DRG D1686- D3 for

S8

59

S10

1.104

7.00

Name	US	DS	Length	ks (mm) /	US IL	DS IL	Fall	Slope	Dia	T of C	Rain
	Node	Node	(m)	n	(m)	(m)	(m)	(1:X)	(mm)	(mins)	(mm/hr)
1.000	S1	S2	66.619	0.600	54.775	53.785	0.990	67.3	450	7.45	50.0
1.001	S2	S3	52.764	0.600	53.785	53.560	0.225	234.5	450	8.11	50.0
1.002	S3	S4	22.494	0.600	53.560	53.540	0.020	1124.7	450	8.74	50.0
1.003	S4	S5	60.998	0.600	53.540	53.175	0.365	167.1	450	9.39	50.0
1.004	S5	S6	36.093	0.600	53.100	52.354	0.746	48.4	525	9.57	50.0
1.005	S6	S7	20.287	0.600	52.354	52.076	0.278	73.0	525	9.70	50.0
1.006	S7	S8	35.958	0.600	52.076	51.880	0.196	183.5	525	10.07	50.0
1.007	S8	S9	36.539	0.600	51.880	51.949	-0.069	-529.6	525	10.67	50.0
1.008	S9	S10	8.699	0.600	51.949	51.504	0.445	19.5	525	10.70	50.0

Name	Vel	Сар	Flow	US	DS	Σ Area	Σ Add	Pro
	(m/s)	(I/s)	(I/s)	Depth	Depth	(ha)	Inflow	Depth
				(m)	(m)		(I/s)	(mm)
1.000	2.481	394.6	90.1	0.797	2.277	0.524	4.1	145
1.001	1.323	210.4	199.8	2.277	2.360	1.198	4.1	352
1.002	0.598	95.0	199.8	2.360	2.290	1.198	4.1	450
1.003	1.570	249.6	199.8	2.290	1.933	1.198	4.1	305
1.004	3.225	698.2	519.0	1.933	3.022	3.161	4.1	339
1.005	2.624	568.0	519.0	3.022	3.738	3.161	4.1	397
1.006	1.650	357.2	519.0	3.738	4.307	3.161	4.1	525
1.007	1.000	216.5	519.0	4.307	4.292	3.161	4.1	525
1.008	5.082	1100.1	519.0	4.292	4.335	3.161	4.1	254

	Kavanagh Burke	File: D1686 Hazelhatch SW Dra	Page 2
Kavanagh Burkf	Consulting Engineers	Network: EX SW	
CONSULTING ENGINEERS		Bartosz Kedzierski	
		24/08/2022	

Manhole Schedule

Node	Easting (m)	Northing (m)	CL (m)	Depth (m)	Dia (mm)	Connections	Link	IL (m)	Dia (mm)
S1	697801.263	732284.496	56.022	1.247	1350	0 1			
						\bigcirc			
						0	1.000	54.775	450
S2	697797.544	732351.011	56.512	2.727	1350	1	1.000	53.785	450
						0 < (
						1 0	1.001	53.785	450
S3	697745.947	732339.974	56.370	2.810	1350	1	1.001	53.560	450
						0			
		700000 404	56.000	0.740	4050	0	1.002	53.560	450
S4	697724.755	732332.431	56.280	2.740	1350		1.002	53.540	450
						0			
<u></u>	607670 204	722204 700	55 550	2 450	4500	0	1.003	53.540	450
55	697670.384	/32304./80	55.558	2.458	1500		1.003	53.175	450
						0			
56	697640 240	72778/ 070	55 001	2 5/17	1500	0	1.004	53.100	525
30	097040.240	732204.929	55.901	5.547	1300		1.004	52.554	525
57	697620 166	732287 859	56 339	4 263	1500	0	1.005	52.354	<u>525</u>
57	057020.100	752207.055	50.555	4.205	1300		1.005	52.070	525
						0 < 1	1.000	52.076	535
S8	697585.163	732279.627	56.712	4.832	1500	1	1.006	52.076	525
						0 < _ 1			
							1 007	F1 000	525
S9	697548.823	732283.437	56.766	4.817	1500	1	1.007	51.880	525
						0			
							1 008	51 9/9	525
S10	697540.537	732286.084	56.364	4.860	1500	1	1.008	51.504	525
						Q			
			c		C	-	I		
			<u>51</u>	mulation	Setting	<u>5</u>			
	Rainfall Me	thodology FS	R			Analysis S	peed I	Detailed	
	۲ M	SR Region Sc 5-60 (mm) 16	otland an 5.500	id Ireland	Г	Skip Steady Drain Down Time (State 3 mins) 2	x 240	
		Ratio-R 0.	278		Ad	ditional Storage (n	n³/ha) 2	20.0	
	Su	ummer CV 0.	750			Check Discharge R	ate(s)	x	
		winter CV 0.	840		0	neck Discharge Vo	nume >	x	
		1	1	Storm Du	rations				
15	30 60	120	180 2	240 3	60	480 600	720	960 1	1440

	Kavanagh Bu	rke		File: D1686 Haze	lhatch SW Dra	Page 3		
Kavanagh Burke	Consulting E	ngine	ers	Network: EX SW		_		
CONSULTING ENGINEERS	_			Bartosz Kedziers	ki			
				24/08/2022				
	•							
R	eturn Period	Clim	ate Change	Additional Area	Additional Flo	w		
	(years)		(CC %)	(A %)	(Q %)			
	2		20	0		0		
	30		20	0		0		
			Ra	<u>infall</u>				
Event	Ре	ak	Average		Event		Peak	Average
	Inter	nsity	Intensity				Intensity	Intensity
	(mm	/hr)	(mm/hr)				(mm/hr)	(mm/hr)
2 year +20% CC 15 minute sum	imer 128	.690	36.415	30 year +20% C	C 15 minute sur	nmer	236.539	66.932
2 year +20% CC 15 minute wint	ter 90	.309	36.415	30 year +20% C	C 15 minute wir	nter	165.992	66.932
2 year +20% CC 30 minute sum	imer 87	.935	24.883	30 year +20% C	C 30 minute sur	nmer	162.335	45.935
2 year +20% CC 30 minute wint	ter 61	.709	24.883	30 year +20% C	C 30 minute wir	nter	113.920	45.935
2 year +20% CC 60 minute sum	imer 62	.411	16.493	30 year +20% C	C 60 minute sur	nmer	113.289	29.939
2 year +20% CC 60 minute wint	ter 41	.464	16.493	30 year +20% C	C 60 minute wir	nter	75.266	29.939
2 year +20% CC 120 minute sui	mmer 40	.537	10.713	30 year +20% C	C 120 minute su	ımmer	72.037	19.037
2 year +20% CC 120 minute wi	nter 26	.931	10.713	30 year +20% C	C 120 minute w	inter	47.859	19.037
2 year +20% CC 180 minute sui	mmer 32	.018	8.239	30 year +20% C	C 180 minute su	ımmer	56.350	14.501
2 year +20% CC 180 minute wi	nter 20	.813	8.239	30 year +20% C	C 180 minute w	inter	36.629	14.501
2 year +20% CC 240 minute su	mmer 25	.971	6.863	30 year +20% C	240 minute su	Immer	45.164	11.936
2 year +20% CC 240 minute wi	nter 17	.255	6.863	30 year +20% C	C 240 minute w	inter	30.006	11.936
2 year +20% CC 360 minute su	mmer 20	.609	5.304	30 year +20% C	C 360 minute su	Immer	35.165	9.049
2 year +20% CC 360 minute wit	nter 13	.397	5.304	30 year +20% C	C 360 minute w	inter	22.858	9.049
2 year +20% CC 480 minute sui	mmer 16	.667	4.404	30 year +20% C	480 minute su	immer	28.104	7.427
2 year +20% CC 480 minute wit	nter 11	.073	4.404	30 year +20% C	C 480 minute w	inter	18.672	7.427
2 year +20% CC 600 minute su	mmer 13	.941	3.813	30 year +20% C	600 minute su	immer	23.285	6.369
2 year +20% CC 600 minute wil	nter 9	.525	3.813	30 year +20% C	600 minute w	inter	15.909	6.369
2 year +20% CC /20 minute su	mmer 12	.647	3.390	30 year +20% C	2720 minute su	immer	20.954	5.616
2 year +20% CC /20 minute wil	nter 8	.500	3.390	30 year +20% C	2 720 minute w	inter	14.082	5.616
2 year +20% CC 960 minute sui	mmer 10	.090	2.815	30 year +20% C	2 960 minute su	immer	11.570	4.603
2 year +20% CC 960 minute Wil	nter /	1001	2.815	30 year +20% C		inter	12.072	4.603
2 year +20% CC 1440 minute si	unimer 8	.U8/ 425	2.10/	30 year +20% C	2 1440 minute s	winter	12.9/3	3.4//
2 year +20% CC 1440 minute w	inter 5	.435	2.16/	30 year +20% C	2 1440 minute V	winter	8./18	3.477

Kavanagh Burke	Kavanagi Consultir	n Burke ng Engine	eers	File Net Bar 24/	e: D1686 H twork: EX tosz Kedz (08/2022	lazelhatch SW ierski	SW Dra	Page	4	
<u>Results</u>	for 2 year	+20% CC	Critical St	torm Dura	ation. Lov	west mass	balance:	99.85	<u>%</u>	
Node Event	US	Peak	Level	Depth	Inflow	Node	Flood	9	Status	
	Node	(mins)	(m)	(m)	(I/s)	Vol (m³)	(m³)			
15 minute winte	r S1	11	54.908	0.133	77.9	1.3052	0.0000	OK		
15 minute winte	r S2	12	54.116	0.331	171.9	2.1124	0.0000	OK		
15 minute winte	r S3	12	53.956	0.396	168.0	0.5674	0.0000	OK		
15 minute winte	r S4	12	53.820	0.280	166.7	0.4009	0.0000	OK		
15 minute winte	r S5	13	53.514	0.414	433.3	7.3510	0.0000	OK		
15 minute winte	r S6	13	53.235	0.881	413.7	1.5570	0.0000	SUR	CHARGED	
15 minute winte	r S7	13	52.994	0.918	413.8	1.6218	0.0000	SUR	CHARGED	
15 minute winte	r S8	13	52.638	0.758	413.9	1.3392	0.0000	SUR	CHARGED	
15 minute winte	r S9	13	52.247	0.298	413.9	0.5263	0.0000	OK	с С	
15 minute winte	r S10	13	51.723	0.219	554.7	0.0000	0.0000	OK	ľ	
Link Event	US	Link	DS (Outflow	Velocity	Flow/Ca	p Lin	k	Discharge	
(Outflow)	Node		Node	(I/s)	(m/s)		Vol (m³)	Vol (m³)	
15 minute winte	r S1	1.000	S2	77.0	0.974	0.19	5 5.4	585		
15 minute winte	r S2	1.001	S3	168.0	1.229	0.79	8 7.2	028		
15 minute winte	r S3	1.002	S4	166.7	1.307	1.75	4 2.8	299		
15 minute winte	r S4	1.003	S5	167.8	1.640	0.67	2 7.0	668		
15 minute winte	r S5	1.004	S6	413.7	2.417	0.59	2 7.1	984		
15 minute winte	r S6	1.005	S7	413.8	1.916	0.72	9 4.3	827		
15 minute winte	r S7	1.006	S8	413.9	1.916	1.15	9 7.7	681		
15 minute winte	r S8	1.007	S9	413.9	2.150	1.91	.2 6.2	554		
15 minute winte	r S9	1.008	S10	413.6	3.915	0.37	6 0.9	193	298.9	

No flood recorded for all storms up to 2years return +20% CCF

KAVANAGH BURKE	Kavanagl Consultir	n Burke ng Engine	eers	File Net Bar 24/	: D1686 H twork: EX S tosz Kedzi (08/2022	azelhatch S SW jerski	SW Dra	Page !	5	
Results f	or 30 year	+20% C	<u>CCritical S</u>	itorm Dur	ation. Lo	west mass	balance:	<u>99.85</u>	<u>%</u>	
Node Event	US	Peak	Level	Depth	Inflow	Node	Flood	S	Status	
	Node	(mins)	(m)	(m)	(I/s)	Vol (m³)	(m³)			
15 minute winte	r S1	14	55.999	1.224	139.8	12.0386	0.0000	FLOC	DD RISK	I
15 minute winte	r S2	14	55.930	2.145	301.2	13.6775	0.0000	SUR	CHARGED	
15 minute winte	r S3	14	55.626	2.066	230.5	2.9571	0.0000	SUR	CHARGED	I
15 minute winte	r S4	14	55.467	1.927	241.2	2.7568	0.0000	SUR	CHARGED	I
15 minute winte	r S5	14	55.113	2.013	676.6	35.7002	0.0000	SUR	CHARGED	I
15 minute winte	r S6	14	54.342	1.988	609.8	3.5124	0.0000	SUR	CHARGED	I
15 minute winte	r S7	14	53.818	1.742	610.3	3.0779	0.0000	SUR	CHARGED	I
15 minute winte	r S8	14	53.044	1.164	610.7	2.0576	0.0000	SUR	CHARGED	I
15 minute winte	r S9	14	52.348	0.399	611.1	0.7049	0.0000	OK	-	
15 minute winte	r S10	14	51.777	0.273	855.9	0.0000	0.0000	OK	\mathbf{Q}	
Link Event	US	Link	DS	Outflow	Velocity	Flow/Ca	p Lin	k I	Discharge	
(Outflow)	Node		Node	(I/s)	(m/s)	,	Vol (i	m³)	Vol (m ³)	
15 minute winter	r S1	1.000	S2	132.0	1.045	0.33	5 10.55	553	- 、 /	
15 minute winte	r S2	1.001	S3	230.5	1.455	1.09	5 8.36	501		
15 minute winter	r S3	1.002	S4	241.2	1.523	2.53	8 3.56	540		
15 minute winter	r S4	1.003	S5	250.9	1.796	1.00	5 9.66	547		
15 minute winter	s5	1.004	S6	609.8	2.823	0.87	3 7.79	973		
15 minute winter	r S6	1.005	S7	610.3	2.825	1.07	4 4.38	327		
15 minute winter	r S7	1.006	S8	610.7	2.827	1.71	0 7.76	581		
15 minute winte	r S8	1.007	S9	611.1	2.918	2.82	3 7.16	536		
15 minute winter	r S9	1.008	S10	611.0	4.186	0.55	5 1.25	598	499.8	
								- 1		
							SW pipe	s surch	narged but	
							no flood	recor	ded for all	
							storms	in to 3	Ovears	
							3101113 0			

Part 2 of 2 of the capacity check performed on the existing drainage network in Hazelhatch residential development receiving the restricted discharge from the proposed site. For area take-off refer to Drg. Ref. D1686-D3 and for original survey of existing SW network refer to J&L Surveys Limited drawing included in this planning application. This part includes nodes downstream from existing hydrobrake in manhole S10

			<u>D</u>	esign Set	<u>ttings</u>			
Rainfall Metho Return Period Additional F FSR M5-6 Time of Entry	odology FSF (years) 17 low (%) 20 Region Scc 0 (mm) 16. Ratio-R 0.2 CV 0.7 y (mins) 7.0	8 500 78 50 0	d Ireland	Maxi	imum Tin Mini ار Enforce	ne of Concen Maximum Rai Minimum ' Cor mum Backdr Preferred Cor clude Interme e best practic	tration (n infall (mm Velocity (nnection op Height ver Depth ediate Gro e design i	nins) 30.00 n/hr) 50.0 m/s) 1.00 Type Level Soffits t (m) 0.200 n (m) 1.200 pund $$ rules x
	Name S10	Area (ha) 0.241	T of E (mins) 7.00	Node Add Inflow (I/s) 56.0	<u>S</u> Cover Level (m) 56.3 6 4	Diameter (mm) 2100	Depth (m) 4.860	Restricted discharge from the existing Hazelhatch catchment of 8.6ha and from the proposed development. Maximum (theoretical) discharge from existing
Impervious area of 4.49ha included. Refer to DRG D1686- D3 for details	S11 S12 S13 S14 S15 S16 S17 S18 S19	1.281 1.011 0.947 1.009	7.00 7.00 7.00 7.00		55.709 56.157 56.281 56.279 56.249 54.940 54.425 53.360 53.025	2100 2100 2100 2100 2100 2100 2100 2100	4.126 4.588 4.776 4.739 4.993 4.208 3.851 3.622 3.409	Hazelhatch development 8.6ha x 6l/s/ha=51.6l/s Restricted discharge from proposed development =4.1l/s Total max discharge for SW network check = 56l/s
	S20 S21 S22	L	-		52.881 52.540 48.000	2100 2100 2100	3.250 3.396 1.367	

<u>Links</u>

Name	US Node	DS Node	Length (m)	ks (mm) / n	US IL (m)	DS IL (m)	Fall (m)	Slope (1:X)	Dia (mm)	T of C (mins)	Rain (mm/hr)
1.000	S10	S11	45.968	0.600	51.504	51.583	-0.079	-581.9	1200	7.77	50.0
1.001	S11	S12	27.543	0.600	51.583	51.569	0.014	1967.4	1200	8.32	50.0
1.002	S12	S13	49.356	0.600	51.569	51.505	0.064	771.2	1200	8.93	50.0
1.003	S13	S14	61.780	0.600	51.505	51.540	-0.035	-1765.1	1200	9.96	50.0
1.004	S14	S15	91.041	0.600	51.540	51.256	0.284	320.6	1200	10.69	50.0
1.005	S15	S16	54.108	0.600	51.256	50.732	0.524	103.3	1200	10.93	50.0
1.006	S16	S17	24.193	0.600	50.732	50.574	0.158	153.1	1200	11.07	50.0
1.007	S17	S18	49.600	0.600	50.574	50.175	0.399	124.3	1200	11.31	50.0
1.008	S18	S19	49.470	0.600	49.738	49.616	0.122	405.5	1200	11.76	50.0

Name	Vel	Сар	Flow	US	DS	Σ Area	Σ Add	Pro
	(m/s)	(I/s)	(I/s)	Depth	Depth	(ha)	Inflow	Depth
				(m)	(m)		(I/s)	(mm)
1.000	1.000	1131.0	106.4	3.660	2.926	0.241	56.0	1200
1.001	0.834	943.0	106.4	2.926	3.388	0.241	56.0	269
1.002	1.339	1514.3	314.7	3.388	3.576	1.522	56.0	368
1.003	1.000	1131.0	314.7	3.576	3.539	1.522	56.0	1200
1.004	2.084	2356.6	479.1	3.539	3.793	2.533	56.0	364
1.005	3.681	4163.4	479.1	3.793	3.008	2.533	56.0	271
1.006	3.021	3416.3	633.2	3.008	2.651	3.480	56.0	347
1.007	3.354	3793.2	633.2	2.651	1.985	3.480	56.0	328
1.008	1.851	2093.7	797.2	2.422	2.209	4.489	56.0	512

VANAG	H BU	RKE	Kavanagh Burke Consulting Engineers					File: D1686 Hazelhatch SW Dra Network: EX SW Bartosz Kedzierski 24/08/2022					ge 2	
						<u>Li</u>	<u>nks</u>							
Name 1.009 1.010 1.011	US Node S19 S20 S21	DS Node S20 S21 S22	Length (m) 30.470 54.454 42.744	ks (m 0 0 0	m) / .600 .600 .600	US IL (m) 49.616 49.631 49.144	DS II (m) 49.63 49.37 46.63	- (1 -0 4 0 3 2	Fall (m) .015 .257 511	Slope (1:X) -2031.3 211.9 17.0	Di (mi 12) 12) 12	a m) 00 00 00	T of C (mins) 12.27 12.62 12.70	Rain (mm/hr) 50.0 50.0 50.0
		Name	Vel (m/s)	Cap (I/s) 1131.	FI (I) 0 79	ow (/s) De (1 17.2 2.	JS epth [m) 209	DS Depth (m) 2.050	Σ Are (ha	ea Σ /) Inf (1, 39 5	Add low /s) 56.0	Pro Dep (mn 120	b th n) 00	
		1.010	2.566 9.086	10275.	9 79	7.2 2. 7.2 2.	196	0.167	4.48	89 5 89 5	6.0 6.0	4. 22	22	
						Manhole	Sched	<u>ule</u>						
Nod	le Ea	asting (m)	Northi (m)	ng	CL (m)	Depth (m)	n Dia (mn	n)	Conne	ctions	Lir	nk	IL (m)	Dia (mm)
S10	697	540.537	732286.	084 5	56.364	4.860) 210	0	~~ <u>~</u>					
										() 1.0	00	51.504	1200
S11	697 [,]	498.618	732304.	949 5	55.709	4.126	5 210	00		1	1.0	00	51.583	1200
512	607	176 707	722221	756 0	-6 1 - 7	1 5 0 0	> 210	0		() 1.0	01	51.583	1200
512	697	476.797	/32321.	/50 :	50.157	4.588	5 210			1	1.0	01	51.569	1200
<u> </u>	607	120 694	722254	202 1	- C 201	4 770	210	0		() 1.0	02	51.569	1200
513	697	439.684	732354.	293 :	56.281	4.776	5 210			1	1.0	02	51.505	1200
C1 4	607	202 042	722204	F7 / F	6 270	4 7 2 0	> 210	0		() 1.0	03	51.505	1200
514	097.	392.842	732394.	574 :	50.279	4.735	9 210			1	1.0	03	51.540	1200
C1F	607	222 050	722454	020 1	C 240	4 007) 110			() 1.0	04	51.540	1200
212	עצס/	322.059	/32451.	050 3	JO.249	4.993	5 210			1	1.0	04	51.220	1200
<u></u>	<u> </u>	270 007	722404	FF 2 7	- 4 0 4 0	4 200) 240			() 1.0	05	51.256	1200
516	697.	∠/ð.9b/	732484.	552 5	54.940	4.208	5 210	U]		05	50.732	1200
C47	C07	260 740	722500	100 1	- 4	2.054	240			() 1.0	06	50.732	1200
517	697	260./19	732500.	436 5	54.425	3.851	1 210			1		06	50.574	1200
										<u> </u>) 1.0	07	50.574	1200
S18	697	222.611	732532.	184 5	53.360	3.622	2 210	00	° K	1	1.0	07	50.175	1200
										ʻ () 1.0	08	49.738	1200

	Kavanagh Burke	File: D1686 Hazelhatch SW Dra	Page 3
Kavanagh Burke	Consulting Engineers	Network: EX SW	
CONSULTING ENGINEERS		Bartosz Kedzierski	
		24/08/2022	

Manhole Schedule

Node	Easting (m)	Northing (m)	CL (m)	Depth (m)	Dia (mm)	Connections	Link	IL (m)	Dia (mm)
S19	697187.134	732566.661	53.025	3.409	2100		1.008	49.616	1200
						¹ 0	1.009	49.616	1200
S20	697166.216	732588.816	52.881	3.250	2100		1.009	49.631	1200
						¹ 0	1.010	49.631	1200
S21	697197.517	732633.375	52.540	3.396	2100	• 1	1.010	49.374	1200
						¹ 0	1.011	49.144	1200
S22	697172.979	732668.374	48.000	1.367	2100		1.011	46.633	1200

Simulation Settings

Rainfall Methodology	FSR	Analysis Speed	Detailed
FSR Region	Scotland and Ireland	Skip Steady State	х
M5-60 (mm)	16.500	Drain Down Time (mins)	240
Ratio-R	0.278	Additional Storage (m³/ha)	20.0
Summer CV	0.750	Check Discharge Rate(s)	х
Winter CV	0.840	Check Discharge Volume	х

Storm Durations

Return Period		Climate	Change	Additic	onal Area	Additi	onal Flow
15	30	60	120	180	240	360	480

(years)	(CC %)	(A %)	(Q %)
2	20	0	0
30	20	0	0

<u>Rainfall</u>

Event	Peak Intensity (mm/hr)	Average Intensity (mm/hr)	Event	Peak Intensity (mm/hr)	Average Intensity (mm/hr)
2 year +20% CC 15 minute summer	128.690	36.415	2 year +20% CC 480 minute summer	16.667	4.404
2 year +20% CC 15 minute winter	90.309	36.415	2 year +20% CC 480 minute winter	11.073	4.404
2 year +20% CC 30 minute summer	87.935	24.883	30 year +20% CC 15 minute summer	236.539	66.932
2 year +20% CC 30 minute winter	61.709	24.883	30 year +20% CC 15 minute winter	165.992	66.932
2 year +20% CC 60 minute summer	62.411	16.493	30 year +20% CC 30 minute summer	162.335	45.935
2 year +20% CC 60 minute winter	41.464	16.493	30 year +20% CC 30 minute winter	113.920	45.935
2 year +20% CC 120 minute summer	40.537	10.713	30 year +20% CC 60 minute summer	113.289	29.939
2 year +20% CC 120 minute winter	26.931	10.713	30 year +20% CC 60 minute winter	75.266	29.939
2 year +20% CC 180 minute summer	32.018	8.239	30 year +20% CC 120 minute summer	72.037	19.037
2 year +20% CC 180 minute winter	20.813	8.239	30 year +20% CC 120 minute winter	47.859	19.037
2 year +20% CC 240 minute summer	25.971	6.863	30 year +20% CC 180 minute summer	56.350	14.501
2 year +20% CC 240 minute winter	17.255	6.863	30 year +20% CC 180 minute winter	36.629	14.501
2 year +20% CC 360 minute summer	20.609	5.304	30 year +20% CC 240 minute summer	45.164	11.936
2 year +20% CC 360 minute winter	13.397	5.304	30 year +20% CC 240 minute winter	30.006	11.936

KAVANAGH BURKE	Kavanagh Burke Consulting Engineers			File: D1686 Hazelhatch SW Dra Network: EX SW Bartosz Kedzierski 24/08/2022	Page 4								
Rainfall													
Event		Peak Intensity (mm/hr)	Average Intensity (mm/hr)	Event		Peak Intensity (mm/hr)	Average Intensity (mm/hr)						
30 year +20% CC 360 minute s	ummer	35.165	9.049	30 year +20% CC 480 minute su	ummer	28.104	7.427						
30 year +20% CC 360 minute v	vinter	22.858	9.049	30 year +20% CC 480 minute w	inter	18.672	7.427						

Kavanagh Burke	Kavanagh Consulting	Burke g Engineers		File: D2 Netwo Bartosz 24/08/	L686 Haze rk: EX SW z Kedziers 2022	elhatch SW / ski	Dra Pag	e 5					
Results for 2 year +20% CC Critical Storm Duration. Lowest mass balance: 99.86%													
Node Even	: US	Peak	Level	Depth	Inflow	Node	Flood	Status					
	Nod	e (mins)	(m)	(m)	(I/s)	Vol (m³)	(m³)						
15 minute wir	ter S10	13	51.976	0.472	89.9	2.1018	0.0000	ОК					
15 minute wir	ter S11	13	51.971	0.388	84.8	1.3425	0.0000	ОК					
15 minute wir	ter S12	13	51.966	0.397	248.6	3.5927	0.0000	OK					
15 minute wir	iter S13	13	51.941	0.436	240.2	1.5094	0.0000	OK					
15 minute wir	iter S14	13	51.860	0.320	362.1	2.4711	0.0000	OK					
15 minute wir	iter S15	13	51.499	0.243	362.5	0.8418	0.0000	OK					
15 minute wir	iter S16	13	51.067	0.335	475.1	2.6660	0.0000						
15 minute wir	iter S17	13	50.875	0.301	4/3.1	1.0411	0.0000	OK					
15 minute wir	ter S18	13	50.245	0.507	593.4	4.5774	0.0000	OK					
15 minute wir	ter S19	14	50.165	0.549	589.3	1.9027	0.0000	OK OK					
15 minute wir	ter S20	14	50.018	0.387	589.6	1.3396	0.0000	OK OK					
15 minute wir	ter SZI	14	49.348	0.204	590.2	0.7056	0.0000						
15 minute wir	iter SZZ	14	46.821	0.188	589.0	0.0000	0.0000	ŬK					
Link Event	US	Link [DS Out	low Ve	locity F	low/Cap	Link	Discharge					
(Outflow)	Node	No	ode (l/	ˈs) (ı	m/s)		Vol (m³)	Vol (m³)					
15 minute winter	S10	1.000 S1	1 3	34.8	0.525	0.075	16.6800						
15 minute winter	S11	1.001 S1	.2	97.3	0.665	0.103	8.8111						
15 minute winter	S12	1.002 S1	.3 24	40.2	0.903	0.159	17.1411						
15 minute winter	S13	1.003 S1	4 2	38.7	0.801	0.211	18.8388						
15 minute winter	S14	1.004 S1	.5 3	52.5	1.805	0.154	18.3656	1					
15 minute winter	S15	1.005 S1	.6 3	52.3	1.776	0.087	11.3495	No flood recorded for					
15 minute winter	S16	1.006 S1	.7 4	73.1	1.985	0.138	5.7708						
15 minute winter	S17	1.007 S1	.8 4	73.0	2.282	0.125	10.2925	an storms up to zyears					
15 minute winter	S18	1.008 S1	.9 58	39.3	1.237	0.281	23.5654	return +20% CCF					
15 minute winter	S19	1.009 S2	0 5	39.6	1.450	0.521	12.4382						
15 minute winter	S20	1.010 S2	1 59	90.2	2.008	0.203	16.0566						
15 minute winter	S21	1.011 S2	2 5	39.6	4.929	0.057	5.1139	1145.7					

KAVANAGH BURKE	Kavanagi Consultir	n Burke ng Engine	ers		File: Netw Barto 24/0	D1686 Ha vork: EX SV osz Kedzie 8/2022	zelhatch SW W rski	Dra Pag	e 6			
Results for 30 year +20% CC Critical Storm Duration. Lowest mass balance: 99.86%												
Node Ever	nt U	S Pe	ak	Level	Dept	n Inflow	v Node	Flood	Status			
	No	de (mi	ns)	(m)	(m)	(I/s)	Vol (m³)	(m³)				
15 minute wi	nter S10)	13	52.106	0.602	2 118.4	4 2.6814	0.0000	OK			
15 minute wi	nter S1	L	13	52.102	0.519	9 111.5	5 1.7969	0.0000	OK			
15 minute wi	nter S12	2	13	52.098	0.529	9 420.6	6 4.7866	0.0000	OK			
15 minute wi	nter S13	3	13	52.065	0.560) 407.5	5 1.9407	0.0000	OK			
15 minute wi	nter S14	1	13	51.971	0.432	1 642.3	3 3.3291	0.0000				
15 minute wi	nter S1	-	13	51.599	0.343	3 645.2	1 1.1880	0.0000	OK			
15 minute wi	nter S16	5	13	51.202	0.470) 858.5	5 3.7457	0.0000	OK			
15 minute wi	nter S1	/	13	50.993	0.419	9 857.8	8 1.4503	0.0000	OK			
15 minute wi	nter S18	3	13	50.4/1	0.73:	3 1083.8	8 6.62/1	0.0000	OK			
15 minute wi	nter S19	9	13	50.362	0.746	5 1079.9	9 2.5854	0.0000	OK			
15 minute wi	nter S20)	14	50.174	0.54:	3 1072.1	1 1.8813	0.0000	OK			
15 minute wi	nter S2	L	14	49.427	0.28:	3 1080.8	8 0.9795	0.0000	OK			
15 minute wi	nter SZ	2	14	46.886	0.25:	3 1081.4	4 0.0000	0.0000	ŬK			
Link Evont	116	Link	DS	Outf		/olocity/	Elow/Can	Link	Dischargo			
(Outflow)	Nodo	LINK	Node		10w (-)	(m/c)	riuw/Cap	LITIK	Vol (m ³)			
15 minute winter	• S10	1 000	S11	- (1):	>) ∣1 ⊑	0 5 3 0	0 099	23 72/10	vor (m)			
15 minute winter	· S11	1.000	S12	13	24.1	0.550	0.055	13 0169				
15 minute winter	· S12	1.001	S12	40)7 5	0.302	0.142	24 5437				
15 minute winter	· \$13	1 003	S14	40	18.2	0.948	0.205	27 1649				
15 minute winter	S14	1.004	S15	64	15.1	2.056	0.274	28.6278	No flood recorded for all			
15 minute winter	S15	1.005	S16	64	13.0	1.975	0.154	18.2543	storms up to 30years			
15 minute winter	S16	1.006	S17	85	57.8	2.261	0.251	9.1835	return +20% CCF			
15 minute winter	S17	1.007	S18	85	54.1	2.655	0.225	16.0476				
15 minute winter	S18	1.008	S19	107	9.9	1.481	0.516	36.0800				
15 minute winter	S19	1.009	S20	107	2.1	1.743	0.948	18.7238				
15 minute winter	S20	1.010	S21	108	80.8	2.343	0.372	25.1304				
15 minute winter	S21	1.011	S22	108	31.4	5.769	0.105	8.0212	1433.2			

Project

Project Name:	CELNRIDGE
Project Date:	04/08/2022
Inspection Standard:	MSCC5 Sewers & Drainage GB (SRM5 Scoring)

Tahla	of	Contonte
rapie	σ	Contents

Project Name CELNRIDGE	Project Number	Project Date 04/08/2022				
Project Information			P-1			
ScoringSummary			P-2			
Section Profile						
Section Summary			P-4			
Section: 1; MH1 > MH2 (MH1X)			1			
Section: 2; MH1.1 > MH1 (MH1.1X)			5			
Section: 3; MH2 > MH3 (MH2X)			7			
Section: 4; MH3 > MH4 (MH3X)			10			
Section: 5; MH4 > MH5 (MH4X)			12			
Section: 6; MH5 > MH6 (MH5X)			16			
Section: 7; MH6 > MH7 (MH6X)			19			
Section: 8; MH8 > MH9 (MH8X)			21			
Section: 9; MH9 > MH10 (MH9X)			23			
Section: 10; MH7 > MH8 (MH7X)			26			
WinCan			28			

BOYNE

Boyne Waste Services Rathdrinagh, Navan Tel. 0469024860

WASTE SERVIC	ES		Info@boynewaste.ie
	Project In	formation	
	Project Name CELNRIDGE	Project Number	Project Date 04/08/2022
Client			
Company: Town or City:	MC CALE PLANT HIRE CELBRIDGE		
Contractor			
Contractor Company: Description: Contact: Street: County: Phone: Email:	Boyne Waste Services Waste Management Service Terry Kerans Rathdrinagh, Navan Co. Meath 0469024860 Info@boynewaste.ie		

WASTE SERVICES

Scoring Summary Project Name CELNRIDGE Project Number Project Date 04/08/2022 Structural Defects 04/08/2022 Grade 3: Best practice suggests consideration should be given to repairs in the medium term. Grade 4: Best practice suggests consideration should be given to repairs to avoid a potential collapse. Grade 5: Best practice suggests that this pipe is at risk of collapse at any time. Urgent consideration should be given to repairs to avoid total failure. Section PLR Grade

Section	PLR	Grade	Description
5	MH4X	4	Broken pipe from 9 o'clock to 3 o'clock

Service / Operational Condition

- Grade 3: Best practice suggests consideration should be given to maintenance activities in the medium term.
- Grade 4: Best practice suggests consideration should be given to maintenance activity to avoid potential blockages.
- Grade 5: Best practice suggests that this pipe is at a high risk of backing up or causing flooding.

Section	PLR	Grade	Description
5	MH4X	3	Settled deposits, hard or compacted, 5% cross-sectional area loss
9	MH9X	3	Settled deposits, hard or compacted, 10% cross-sectional area loss

Abandoned Surveys

Section	PLR	Description
2	MH1.1X	Survey abandoned

Information

These scoring summaries are based on the SRM grading from the WRc.

Boyne Waste Services Rathdrinagh, Navan Tel. 0469024860 Info@boynewaste.ie

WAS						1110 @	boynowasto.io					
			Sectio	on Profile								
Project NameProject NumberProject DateCELNRIDGE04/08/2022												
Circul	ar, 225 mm											
Section	Upstream Node	Downstream Node	Date	Road	Material	Total Length	Inspected Length					
1	MH1	MH2	04/08/2022		Polyvinyl chloride	64.61 m	64.61 m					
Total: '	Total: 1 Inspection x Circular 225 mm = 64.61 m Total Length and 64.61 m Inspected Length											
Circular, 450 mm												
Section	Upstream Node	Downstream Node	Date	Road	Material	Total Length	Inspected Length					
3	MH2	MH3	04/08/2022		Concrete	51.00 m	51.00 m					
4	MH3	MH4	04/08/2022		Concrete	19.24 m	19.24 m					
5	MH4	MH5	04/08/2022		Concrete	54.20 m	54.18 m					
6	MH5	MH6	04/08/2022		Concrete	33.60 m	33.60 m					
7	MH6	MH7	04/08/2022		Concrete	17.70 m	16.05 m					
8	MH8	MH9	04/08/2022		Concrete	29.04 m	29.04 m					
9	MH9	MH10	05/08/2022		Concrete	20.46 m	21.14 m					
10	MH7	MH8	05/08/2022		Concrete	32.59 m	32.59 m					

Total: 8 Inspections x Circular 450 mm = 257.84 m Total Length and 256.84 m Inspected Length Total: 9 Inspections = 322.45 m Total Length and 321.45 m Inspected Length

BOYNE

WASTE SEDVICES

Boyne Waste Services Rathdrinagh, Navan Tel. 0469024860 Info@boynewaste.ie

Section Summary							
Project Name CELNRIDGE	Project Number	Project Date 04/08/2022					
Number of sections		10					
Total length of sewer network		352.62 m					
Total length of inspections		351.63 m					
Total length of abandoned inspections		0.00 m					
Total abandoned inspections		1					
Number of section inspection photos		53					
Number of section inspection videos		11					
Number of section inspection scans		0					
Number of section inclination measurements		0					

PLR:			MH1X	Upstream Node:	MH1			
Inspec	tion Direc	tion:	on: Upstream Downstream Node: MH2					
Inspec	ted Lengtl	h:	64.61 m	Dia/Height:	225 mm			
Total L	ength:	-	64.61 m	Material:	Polyvinyl chloride			
No.	m+	Code	Observation					
1	0.00	МН	Start node type, manhole, reference numb	per: MH2				
2	0.00	WL	Water level, 5% of the vertical dimension					
3	7.80	CN	Connection other than junction at 12 o'closed	ck, diameter: 150mm				
4	14.51	CN	Connection other than junction at 12 o'closed	ck, diameter: 150mm				
5	33.89	CN	Connection other than junction at 3 o'clock	Connection other than junction at 3 o'clock, diameter: 150mm				
6	34.66	CN	Connection other than junction at 12 o'clock, diameter: 150mm					
7	37.68	CN	Connection other than junction at 10 o'clock, diameter: 150mm					
8	40.22	CN	Connection other than junction at 12 o'clock, diameter: 150mm					
9	48.11	CN	Connection other than junction at 12 o'clock, diameter: 150mm					
10	53.58	CN	Connection other than junction at 10 o'clo	Connection other than junction at 10 o'clock, diameter: 150mm				
11	61.64	CN	Connection other than junction at 9 o'clock	k, diameter: 150mm				
12	64.61	MHF	Finish node type, manhole, reference num	ber: MH1				
13	64.61	WL	Water level, 5% of the vertical dimension					
PLR:			MH1.1X	Upstream Node:	MH1.1			
Inspec	tion Direc	tion:	Upstream	Downstream Node:	MH1			
Inspec	ted Lengtl	h:	30.17 m	Dia/Height:	225 mm			
Total L	ength:		30.17 m	Material:	Polyvinyl chloride			
No.	m+	Code	Observation					
1	0.00	MH	Start node type, manhole, reference numb	per: MH1				
2	0.00	WL	Water level, 5% of the vertical dimension					
3	0.98	CN	Connection other than junction at 12 o'closed	ck, diameter: 150mm				

OYNE

WASTE SERVICES

B

			Section	Summary					
			Project Name CELNRIDGE	Project Number		Project Date 04/08/2022			
No.	m+	Code	Observation						
4	1.95	CN	Connection other than junction at 11 o'clo	ck, diameter: 150mm					
5	2.46	CN	Connection other than junction at 1 o'cloc	k, diameter: 150mm					
6	30.17	SA	Survey abandoned						
7	30.17	WL	Water level, 5% of the vertical dimension						
PLR:			MH2X	Upstream Node:	MH2				
Inspec	tion Direc	tion:	Downstream	Downstream Node:	MH3				
Inspec	ted Lengtl	h:	51.00 m	Dia/Height:	450 mm				
Total I	_ength:		51.00 m	Material:	Concrete				
No.	m+	Code	Observation						
1	0.00	MH	Start node type, manhole, reference numb	ber: MH2					
2	0.00	WL	Water level, 5% of the vertical dimension						
3	10.05	CN	Connection other than junction at 12 o'clo	ck, diameter: 150mm					
4	11.16	CN	Connection other than junction at 11 o'clo	ck, diameter: 150mm					
5	15.04	CNC	Connection other than junction, closed at	1 o'clock, diameter: 150mm	1				
6	16.08	CN	Connection other than junction at 1 o'cloc	onnection other than junction at 1 o'clock, diameter: 150mm					
7	24.91	CN	connection other than junction at 11 o'clock, diameter: 150mm						
8	26.00	CN	Connection other than junction at 11 o'clock, diameter: 150mm						
9	51.00	MHF	Finish node type, manhole, reference nun	Finish node type, manhole, reference number: MH3					
10	51.00	WL	Water level, 5% of the vertical dimension						
PLR:			МНЗХ	Upstream Node:	MH3				
Inspec	ction Direc	tion:	Downstream	Downstream Node:	MH4				
Inspec	cted Lengtl	h:	19.24 m	Dia/Height:	450 mm				
No	_ength.	Code	Observation		Concrete				
1	0.00		Start pade type, manhole, reference numb						
2	0.00		Water level 5% of the vertical dimension						
2	1.50		Connection other than junction at 12 o'do	ck diameter: 150mm					
1	11.00		Connection other than junction at 12 o'clo	ck, diameter: 150mm					
5	10.24	MHE	Einish node type, manhole, reference num	ber: MH4					
6	19.24	WI	Water level 5% of the vertical dimension						
	10.24								
PLR:			MH4X	Upstream Node:	MH4				
Inspec	tion Direc	tion:	Downstream	Downstream Node:	MH5				
Total I	enath.	n:	54.18 m	Material:	450 mm				
No.		Code	Observation		00.101010				
1	0.02	мн	Start node type, manhole, reference numb	per: MH4					
2	0.02	WL	Water level, 5% of the vertical dimension						
3	7.48	CN	Connection other than junction at 12 o'clo	ck, diameter: 150mm					
4	8.42	CN	Connection other than junction at 10 o'clo	ck, diameter: 150mm					
5	12.27	CN	Connection other than junction at 1 o'cloc	k, diameter: 150mm					
6	28.80	CN	Connection other than junction at 2 o'cloc	k, diameter: 150mm					
7	34.40	DEC	Settled deposits, hard or compacted. 5%	cross-sectional area loss					
	I	I							

			Section	Summary						
			Project NameProject NumberProject DateCELNRIDGE04/08/2022							
No.	m+	Code	Observation							
8	34.87	CN	Connection other than junction at 12 o'clo	ck, diameter: 150mm						
9	35.41	CL	Crack, longitudinal at 12 o'clock							
10	35.90	CN	Connection other than junction at 12 o'clo	ck, diameter: 150mm						
11	37.02	CN	Connection other than junction at 12 o'clo	ck, diameter: 150mm						
12	46.69	В	Broken pipe from 9 o'clock to 3 o'clock							
13	54.07	WL	Water level, 5% of the vertical dimension							
14	54.20	MHF	Finish node type, manhole, reference nun	nber: MH5						
PLR:			MH5X	Upstream Node:	MH5					
Inspec	tion Direct	tion:	Downstream	Downstream Node:	MH6					
Inspec	ted Lengtl	h:	33.60 m Dia/Height: 450 mm							
Total L	ength:		33.60 m	Material:	Concrete					
No.	m+	Code	Observation							
1	0.00	MH	Start node type, manhole, reference numl	per: MH5						
2	0.00	WL	Water level, 5% of the vertical dimension							
3	1.63	CN	Connection other than junction at 11 o'clo	ck, diameter: 100mm						
4	10.68	CN	Connection other than junction at 12 o'clo	ck, diameter: 100mm						
5	11.50	CN	Connection other than junction at 12 o'clo	ck, diameter: 100mm						
6	13.05	CN	Connection other than junction at 12 o'clo	Connection other than junction at 12 o'clock, diameter: 100mm						
7	14.01	CN	Connection other than junction at 12 o'clo	Connection other than junction at 12 o'clock, diameter: 100mm						
8	33.60	MHF	Finish node type, manhole, reference nun	Finish node type, manhole, reference number: MH6						
9	33.60	WL	Water level, 5% of the vertical dimension							
PLR:			MH6X	Upstream Node:	MH6					
Inspec	tion Direct	tion:	Downstream	Downstream Node:	MH7					
Total I	ength:	n:	16.05 m	Material:	450 mm					
No.	m+	Code	Observation	materiali	Contract					
1	0.05	МН	Start node type, manhole, reference numl	per: MH6						
2	0.05	WL	Water level, 5% of the vertical dimension							
3	12.15	CN	Connection other than junction at 12 o'clo	ck. diameter: 150mm						
4	15.79	WL	Water level, 5% of the vertical dimension	- ,						
5	16.10	MHF	Finish node type, manhole, reference nun	nber: MH7						
PI P.			MH8X	Upstream Node:	MH8					
Inspec	tion Direct	tion:	Downstream	Downstream Node:	MH9					
Inspec	ted Lengtl	h:	29.04 m	Dia/Height:	450 mm					
Total L	ength:		29.04 m	Material:	Concrete					
No.	m+	Code	Observation							
1	0.00	МН	Start node type, manhole, reference numl	ber: MH8						
2	0.00	WL	Water level, 5% of the vertical dimension							
3	2.82	CN	Connection other than junction at 12 o'clo	ck, diameter: 150mm						
4	11.79	WL	Water level, 20% of the vertical dimension	า						
5	21.84	CN	Connection other than junction at 12 o'clo	ck, diameter: 150mm						
6	25.78	WL	Water level, 60% of the vertical dimension	า						

			Section	Summary					
			Project Name CELNRIDGE	Project Numbe	r	Project Date 04/08/2022			
No.	m+	Code	Observation						
7	29.03	WL	Water level, 40% of the vertical dimension	on					
8	29.04	MHF	Finish node type, manhole, reference nu	umber: MH9					
PLR:			МН9Х	Upstream Node:	MH9				
Inspec	ction Direc	tion:	Downstream	Downstream Node:	MH10				
Inspec	cted Lengt	h:	21.14 m	Dia/Height:	450 mm				
Total L	_ength:		20.46 m	Material:	Concrete				
No.	m+	Code	Observation						
1	-0.68	CN	Connection other than junction at 12 o'c	lock, diameter: 150mm					
2	0.00	МН	Start node type, manhole, reference nur	mber: MH8					
3	0.00	WL	Water level, 5% of the vertical dimensio	ater level, 5% of the vertical dimension					
4	9.88	DEC	Settled deposits, hard or compacted, 10	ettled deposits, hard or compacted, 10% cross-sectional area loss					
5	12.89	CN	Connection other than junction at 12 o'c	lock, diameter: 150mm					
6	20.46	MHF	Finish node type, manhole, reference nu	umber: MH9					
7	20.46	WL	Water level, 50% of the vertical dimension	on					
PLR:			MH7X	Upstream Node:	MH7				
Inspec	ction Direc	tion:	Downstream	Downstream Node:	MH8				
Inspec	ted Lengt	h:	32.59 m	Dia/Height:	450 mm				
Total L	_ength:		32.59 m	Material:	Concrete				
No.	m+	Code	Observation						
1	0.00	МН	Start node type, manhole, reference nur	mber: MH7					
2	0.00	WL	Water level, 5% of the vertical dimensio	n					
3	5.74	CN	Connection other than junction at 12 o'c	lock, diameter: 150mm					
4	24.95	CN	Connection other than junction at 11 o'c	lock, diameter: 150mm					
5	32.59	WL	Water level, 5% of the vertical dimensio	n					
6	32.59	MHF	Finish node type, manhole, reference no	umber: MH8					

		;	Sectio	n Inspection	- 04/08/2022	- MH1X			
Section	Inspecti	ion Date	Time	Client's Job Ref	Weather	Pre Clea	ined	PLR	
1	1	04/08/22	10:52	Not Specified	Not Specified	Not Spec	cified	MH1)	X
Not S	Specified	Not Sp	ecified	Not Specified	Not Specified	Not Spec	atus cified	Not Spec	ve ID cified
Town or	Village:			Inspection Direction:	Upstream	Upstream No	de:	MH1	
Road:				Inspected Length:	64.61 m	Upstream Pip	be Depth:		
Location	1:			Total Length:	64.61 m	Downstream	Node:	MH2	
Surface ⁻	Туре:			Joint Length:	0.00 m	Downstream	Pipe Dept	h:	
Use:		Surface wat	er	_	Pipe Shape:	Circular			
Type of F	Pipe:				Dia/Height:	225 mm			
Year Cor	nstructed:				Material:	Polvvinvl chlo	ride		
Flow Cor	ntrol:				Lining Type:	No Linina			
Inspectio	on Purpose	e:			Lining Material:	No Linina			
Commen	nts:								
Recomm	nendations	:							
Scale:	1:562	Position [m]	Code	Observation			MPEG	Photo	Grade
D	epth: m								
	MH2								
	\frown								
		0.00	МН	Start node type, manh	nole, reference number:	MH2	00:00:01		
		0.00	WL	Water level, 5% of the	e vertical dimension		00:00:02		
	0								
		7.80	CN	Connection other than	n junction at 12 o'clock,	diameter:	00:00:38	MH1X_c59	
				150mm				e1057-652	
	0	11 51	CN	Connection other that	iunction at 12 alclock	diamotor	00.01.11	D-4675-D51	
		14.51	CN	150mm	I junction at 12 0 clock,	ulameter.	00.01.11	aab10f-7e	
								2f-4dd3-80	
		33.89	CN	Connection other than	n junction at 3 o'clock, d	liameter:	00:02:25	MH1X_94	
				150mm				3d-4219-8	
		34.66	CN	Connection other than	n iunction at 12 o'clock.	diameter:	00:02:33	MH1X 91	
	6			150mm				9a2f75-a5	
	\mathcal{M}	07.00	0 11					4f-4835-92	
		37.68	CN	Connection other than	n junction at 10 o'clock,	diameter:	00:02:48	MH1X_ee	
	Φ							a8-4087-8f	
		40.22	CN	Connection other than	n junction at 12 o'clock,	diameter:	00:03:02	MH1X_df9	
				150mm				4edc2-c37	
	0	48 11	CN	Connection other than	iunction at 12 o'clock	diameter:	00.03.34	MH1X 57	
			ON	150mm			00.00.01	d0c272-1b	
								53-45a2-a	
		53.58	CN	Connection other than	n junction at 10 o'clock,	diameter:	00:04:01	MH1X_bfc	
				1501111				5-4d00-81	
		61.64	CN	Connection other thar	n junction at 9 o'clock, d	liameter:	00:04:39	MH1X_29	
				150mm				b6fb07-e6	
		64 61		Finish node type mar	abola reference numbe	r: M山1	00.05.00	ee-4/7t-82 M⊔1∨ of-	
		04.01	WIFF	Finish node type, mar	inole, relerence numbe		00:05:02	ef57e-0be	
	\bigcirc							9-4e71-afe	
	MH1	64.61	WL	Water level, 5% of the	e vertical dimension		00:04:59		
D	epth: m								
		Constructio	n Features			Miscellaneous	Features		
		Structura	I Defects		Serv	ice & Operation	al Observa	tions	

Structural Defects Service & Operational Observations STR No. Def STR Peak STR Mean STR Total STR Grade SER No. Def SER Mean SER Total SER Grade										
STR No. Def STR Peak STR Mean STR Total STR Grade SER No. Def SER Peak SER Mean SER Total SER Grade	Structural Defects						Service &	Operational Ob	servations	
	STR No. Def	STR Peak	STR Mean	STR Total	STR Grade	SER No. Def	SER Peak	SER Mean	SER Total	SER Grade
0 0.0 0.0 0.0 1.0 0 0.0 0.0 1.0	0	0.0	0.0	0.0	1.0	0	0.0	0.0	0.0	1.0

Boyne Waste Services Rathdrinagh, Navan Tel. 0469024860 November Services Section Pictures - 04/08/2022 - MH1X Section Direction Direction PLR MH1X Client's Job Ref Contractor's Job Ref

MH1X_c59e1057-652b-4675-b5fb-71543a52f9b3_20220804_ 121302_668.jpg, 00:00:38, 7.80 m Connection other than junction at 12 o'clock, diameter: 150mm

MH1X_d9aab10f-7e2f-4dd3-80fa-f1b6acda4d06_20220804_1 21342_777.jpg, 00:01:11, 14.51 m Connection other than junction at 12 o'clock, diameter: 150mm

MH1X_94586d56-b03d-4219-8d0e-ef077a339e11_20220804_ 121504_889.jpg, 00:02:25, 33.89 m Connection other than junction at 3 o'clock, diameter: 150mm

MH1X_919a2f75-a54f-4835-92be-6198dc03eb63_20220804_ 121519_569.jpg, 00:02:33, 34.66 m Connection other than junction at 12 o'clock, diameter: 150mm

0.00 °C

37.68

0.55 2 10:57:23 2022-08-04

MH1X_ee1c0f99-87a8-4087-8f07-f0800bf0e12d_20220804_1

21542_999.jpg, 00:02:48, 37.68 m

Connection other than junction at 10 o'clock, diameter: 150mm

MH1X_57d0c272-1b53-45a2-a4a9-7421570706f0_20220804_ 121647_528.jpg, 00:03:34, 48.11 m Connection other than junction at 12 o'clock, diameter: 150mm

MH1X_df94edc2-c377-4cb8-bc71-2699117895ee_20220804_ 121604_615.jpg, 00:03:02, 40.22 m Connection other than junction at 12 o'clock, diameter: 150mm

-2.00 10:57:45 2022-08-04

0.00

40.22 m

MH1X_bfc75bec-4735-4d00-8117-5ff57860b03f_20220804_1 21724_311.jpg, 00:04:01, 53.58 m Connection other than junction at 10 o'clock, diameter: 150mm

MH1X_29b6fb07-e6ee-477f-82b9-db043515d9ac_20220804_ 121812_773.jpg, 00:04:39, 61.64 m Connection other than junction at 9 o'clock, diameter: 150mm

MH1X_3fdef57e-0be9-4e71-afe2-355dc82f51ad_20220804_1 21855_215.jpg, 00:05:02, 64.61 m Finish node type, manhole, reference number: MH1

Boyne Waste Services Rathdrinagh, Navan Tel. 0469024860 Info@boynewaste.ie

		S	ection	Inspection -	04/08/2022 -	MH1.1X			
Section	ection Inspection Date Time		Client`s Job Ref	Weather	Pre Clea	Pre Cleaned		1	
2	2 1 04/08/22 11:43		Not Specified	Not Specified	Not Spec	cified	MH1.1X		
Not S	pecified	Not Sp	ecified	Not Specified	Not Specified	Not Spec	cified	Not Spec	ve ID cified
Town or V	/illage:			Inspection Direction:	Upstream	Upstream No	ode:	MH1.1	
Road:				Inspected Length:	30.17 m	Upstream Pi	pe Depth:		
Location:				Total Length:	30.17 m	Downstream	Node:	MH1	
Surface T	ype:			Joint Length:	0.00 m	Downstream	Pipe Dept	า:	
Use:		Surface wa	ter		Pipe Shape:	Circular			
Type of Pi	ipe:				Dia/Height:	225 mm			
Year Cons	structed:				Material:	Polyvinyl chlo	oride		
Flow Cont	trol:				Lining Type:	No Lining			
Inspection	n Purpose:				Lining Material:	No Lining			
Comment Recomme	s: endations:								
Scale:	1:263 P	osition [m]	Code	Observation			MPEG	Photo	Grade
De N	pth: m IH1								
		0.00	MH	Start node type, manh	nole, reference number:	MH1	00:00:05		
		0.00	WL	Water level, 5% of the	e vertical dimension		00:00:05		
		0.98	CN	Connection other thar 150mm	n junction at 12 o'clock,	00:00:10	MH1.1X_e b26a47c-e 8d7-4cdc-		
		1.95	CN	Connection other thar 150mm	00:00:17	MH1.1X_2 df983e1-0 84d-4531-			
•		2.46	CN	Connection other thar 150mm	n junction at 1 o'clock, c	liameter:	00:00:23	MH1.1X_2 3de506c-9 8d2-4258-	
		30.17	С	Remark: ***** Combir	ned *****				
		30.17	С	Remark: Inspection fr	om the other side				
		30.17	С	Remark: Uninspected	Length: 0.0				
		30.17	С	Remark: Inspection fr	om the other side				
		30.17	С	Remark: ***** Combir	ned *****				
		30.17	SA	Survey abandoned: C	AP IN LINE		00:02:52	MH1.1X_9 d9612db-5 7f7-4430-8	
MI De	H1.1 pth: m	30.17	WL	Water level, 5% of the	e vertical dimension		00:02:51		
		Construction	n Featuras			Miscollanoour	Footuroo		
		Structura	Defects		Serv	ice & Operation	al Observat	tions	
STR No F)ef STR P	eak STR	Mean ST	R Total STR Grade	SER No Def SER F		ean SFR		R Grade

0 CELNRIDGE 0.0

0.0

0.0

1.0

0

0.0

0.0

0.0

1.0

MH1.1X_eb26a47c-e8d7-4cdc-8ef7-24576831a7a5_2022080 4_115034_873.jpg, 00:00:10, 0.98 m Connection other than junction at 12 o'clock, diameter: 150mm

Boyne Waste Services

Tel. 0469024860

MH1.1X_2df983e1-084d-4531-a5d4-77eb7f9ac8f0_20220804 _115052_484.jpg, 00:00:17, 1.95 m Connection other than junction at 11 o'clock, diameter: 150mm

MH1.1X_23de506c-98d2-4258-9eee-1a5e4b4a140f_2022080 4_115107_227.jpg, 00:00:23, 2.46 m Connection other than junction at 1 o'clock, diameter: 150mm

MH1.1X_9d9612db-57f7-4430-8fa4-a6007b2ed667_20220804 _115347_738.jpg, 00:02:52, 30.17 m Survey abandoned, CAP IN LINE

Section Inspection - 04/08/2022 - MH2X													
Section	Inspectio	on Da	te	Time	Client's Job Ref		Weather Not Specified		Pre Cleaned				
3 Ope	erator	04/08	Vehicle	13:36	Not C	amera	Preset Le	nath	Legal St	tatus	Alter	nativ	/e ID
Not S	pecified	N	lot Specif	ied	Not	Specified	Not Spec	ified	Not Spe	cified	Not \$	Speci	fied
Town or V	/illage:				Inspectio	on Direction:	Downstream		Upstream No	ode:	MH2		
Road:					Inspecte	d Length:	51.00 m						
Location:					Total Lei	ngth:	51.00 m		Downstream	Node:	MH3		
Surface Ty	ype:	Curto	a watar		Joint Lei	ngth:	0.00 m		Downstream	Pipe Dept	h:		
Use: Type of Pi	ino-	Suna	se water				Pipe Shape:		450 mm				
Year Cons	structed:						Material:		Concrete				
Flow Cont	trol:						Lining Type:		No Lining				
Inspectior	n Purpose:	:					Lining Materi	al:	No Lining				
Comment	s:												
Recomme	endations:												
Scale:	1:444 I	Position	[m]	Code	Observ	ation				MPEG	Phote	o	Grade
De	pth: m												
M	IH2												
		0.00		MH	Start no	ode type, manh	nole, reference	number: N	1H2	00:00:01			
		0.00		WL	Water I	evel, 5% of the	e vertical dimer	ision		00:00:01			
		10.05		CN	Connec	tion other than	iunation at 12 alalack diamatori			00.00.33	MH2Y	74	
		10.05		CIN	150mm		r junction at 12		ameter.	00.00.33	82183b	-d5	
		11 10		CN	Cannad	tion other they	iunation at 11	مامام ماز	omotori	00.00.45	ff-479a	-a0	
\square		11.10		CN	150mm		I junction at TT	U CIUCK, UI	ameter.	00.00.45	004614	-2d	
		15.04		CNC	Connor	tion other ther	iunation alog	ad at 1 a'al	ook	00.01.05	ab-4f1f	-be	
		13.04		CINC	diamete	er: 150mm			υσκ,	00.01.03	6c2b3b	-85	
		16.08		CN	Connec	tion other than	n junction at 1 c	o'clock dia	meter:	00.01.14	b3-410; мн2х	3-a _{Ofb}	
	Z	10.00		ON	150mm		r junicuon at i c		motor.	00.01.14	efb3f-8	lea	
		24 01		CN	Connec	tion other than	n junction at 11 o'clock_diameter			00.01.44	-41ca-8	3cd	
		24.01		ON	150mm		i junction at 11	0 00000, 01	amotor.	00.01.44	e51b38	-34	
		26.00		CN	Connec	tion other than	iunction at 11	o'clock di	ameter:	00.00.00	24-4548 MH2X	9-9 3-9	
		20.00		ON	150mm		i junction at 11	0 00000, 01	amotor.	00.00.00	127a78	-8b	
											3f-426c	-97	
		51.00		MHF	Finish r	ode type, mar	nhole, reference	e number:	МНЗ	00:01:42	MH2X_	_b0	
											0454b0 f7-4a2c	-83 -9b	
	\bigcirc \land	51.00		WL	Water I	evel, 5% of the	e vertical dimer	ision		00:01:36			
M	IH3												
Dej	ptn: m												
		Cons	truction F	eatures					Viscellaneous	s Features			
STR No. D	Def STR	Stru Peak	uctural De STR Mea	efects an <u>S</u> T	R Total	STR Grade	SER No. Def	Servic	e & Operatior	nal Observa	itions R Total	SFF	R Grade
0	<u>0</u> .	.0	0.0	01	0.0	1.0	0	0.0			0.0		1.0
CELNRIDO	GE												7

MH2X_7482183b-d5ff-479a-a0ec-112988d212a8_20220804_ 141425_772.jpg, 00:00:33, 10.05 m Connection other than junction at 12 o'clock, diameter: 150mm

MH2X_93004614-2dab-4f1f-be98-76fc9a9a2bfa_20220804_1 41446_221.jpg, 00:00:45, 11.16 m Connection other than junction at 11 o'clock, diameter: 150mm

MH2X_666c2b3b-85b3-4103-aea0-eb7b00f0e43d_20220804_ 141516_528.jpg, 00:01:05, 15.04 m Connection other than junction, closed at 1 o'clock, diameter: 150mm

MH2X_0fbefb3f-81ea-41ca-8cd9-dafe8da40b41_20220804_1 41534_444.jpg, 00:01:14, 16.08 m Connection other than junction at 1 o'clock, diameter: 150mm

Boyne Waste Services B OYNE Rathdrinagh, Navan Tel. 0469024860 WASTE SERVICES Info@boynewaste.ie Section Pictures - 04/08/2022 - MH2X PLR Inspection Direction Client's Job Ref Section Contractor's Job Ref Downstream MH2X 3

MH2X_bee51b38-3424-4548-923f-fe8398646836_20220804_ 141613_321.jpg, 00:01:44, 24.91 m Connection other than junction at 11 o'clock, diameter: 150mm

MH2X_dd127a78-8b3f-426c-9723-177f43cbf157_20220804_1 41633_588.jpg, 00:00:00, 26.00 m Connection other than junction at 11 o'clock, diameter: 150mm

MH2X_b00454b0-83f7-4a2c-9b09-4c48b9ac647b_20220804_ 142538_780.jpg, 00:01:42, 51.00 m Finish node type, manhole, reference number: MH3

Boyne Waste Services

Rathdrinagh, Navan Tel. 0469024860 Info@boynewaste.ie

MH3X_5944b09f-6b3e-4628-ad87-44621e35d087_20220804_ 163534_120.jpg, 00:00:23, 1.59 m Connection other than junction at 12 o'clock, diameter: 150mm

MH3X_66dc5b38-dbc4-479a-97a2-ba4f1dc3f7ed_20220804_ 163709_772.jpg, 00:01:37, 19.24 m Finish node type, manhole, reference number: MH4

Section Inspection - 04/08/2022 - MH4X													
Section 5	SectionInspectionDateTime5104/08/2214:49		Client	s Job Ref Specified	Weath Not Spec	er ified	Pre Cleane Not Specifi	ed	N	PLR 1H4X			
Not Sp	Specified Not Specified				amera Specified	Not Specifi	u s ed	Alter Not S	native ID Specified				
Town or Vi	llage:			Inspecti	on Direction:	pstream Node):	MH4					
Road:	-			Inspecte	d Length:	54.18 m	L	Ipstream Pipe	Depth:				
Location:				Total Le	Total Length: 54.20 m Downstream Node: MH5								
Surface Ty	pe:			Joint Le	ngth:	0.00 m		ownstream Pi	ipe Deptl	h:			
Use:		Surface wa	iter			Pipe Shape:	C	Circular					
Type of Pip	be:					Dia/Height:	4	50 mm					
Year Const	tructed:					Material:	C	Concrete					
Flow Contr	ol:					Lining Type:	١	lo Lining					
Inspection	Purpose:					Lining Materi	ial:	lo Lining					
Comments Recommen	: ndations:												
Scale: 1	·472 P	osition [m]	Code	Observ	vation				MPFG	Photo	o Grade		
Don	•h.m		oouo	0.0001							, orado		
Mł	44												
		0.02	MH	Start no	ode type, manh	nole, reference	number: M	H4 (00:00:03				
		0.02	WL	Water I	evel, 5% of the	e vertical dimer	nsion	(00:00:05				
Ē		7.48	CN	Conneo 150mm	ction other thar	i junction at 12	imeter: (00:00:30	MH4X_ 050bf0- 0-4607-	92 f74 -9b			
		8.42	CN	Conneo 150mm	ction other than	n junction at 10	o'clock, dia	meter: (00:00:40	MH4X_ 172e04- e3-4639	d2 -21 9-9		
		12.27	CN	Conneo 150mm	ction other than	n junction at 1 c	o'clock, dian	neter: (00:00:59	MH4X_ b5a8f-5 -4926-9	f9f cf2 Jab		
		28.80	CN	Conneo 150mm	ction other than	n junction at 2 c	o'clock, dian	neter: (00:01:53	MH4X_ 20b1cc db-46e6	.38 -3f 6-b		
4		34.40	DEC	Settled area los	deposits, hard ss	or compacted	sectional (00:02:13	MH4X_8 c4c15-0 3-4a6c-	3c2 3)08 -98			
7		34.87	CN	Conneo 150mm	Connection other than junction at 12 o'clock, diameter: 00:02:24 150mm								
υΨΨ		35.41	CL	Crack,	MH4X_0 76fa8-e -4675-a	c4c 2 / 2 3ef f0d							
		35.90	CN	Conneo 150mm	ction other than	00:02:47	MH4X_ 7a1c2d- d3-4f1f-	bb -76 -8d					
-		37.02	CN	Conneo 150mm	Connection other than junction at 12 o'clock, diameter: 00:02:55 MH4X_ 150mm 00:02:55 MH4X_ 315f6								
		46.69	В	Broken pipe from 9 o'clock to 3 o'clock 00:03:27 MH4X 8623at							aa 4 -4c		
54.07 WL Water level, 5% of the vertical dimension 00:03:52													
MI Dep	H5 th: m	54.20	MHF Finish node type, manhole, reference number: MH5 00:03:58 MH4X_c98 2e121-5ee 6-4a2f-a20										
		Constructio	on Features				N	liscellaneous F	eatures				
		Structura	al Defects				Service	& Operational	Observa	tions			
STR No. De	ef STR P	eak STR	Mean S	TR Total	STR Grade	SER No. Def	SER Pea	k SER Mea	n SER		SER Grade		

CELNRIDGE

MH4X_92050bf0-f740-4607-9b7b-0fe72b8dc872_20220805_1 72843_281.jpg, 00:00:30, 7.48 m Connection other than junction at 12 o'clock, diameter: 150mm

MH4X_d2172e04-21e3-4639-9c44-073264f7bc07_20220805_ 172907_873.jpg, 00:00:40, 8.42 m Connection other than junction at 10 o'clock, diameter: 150mm

MH4X_f9fb5a8f-5cf2-4926-9ab0-6a22cdceed50_20220805_1 72938_252.jpg, 00:00:59, 12.27 m Connection other than junction at 1 o'clock, diameter: 150mm

MH4X_3820b1cc-3fdb-46e6-ba0c-613c482e512a_20220805_ 173038_719.jpg, 00:01:53, 28.80 m Connection other than junction at 2 o'clock, diameter: 150mm

MH4X_c4c76fa8-e3ef-4675-af0d-2880a4e39879_20220805_1 73212_533.jpg, 00:02:37, 35.41 m Crack, longitudinal at 12 o'clock

MH4X_bb7a1c2d-76d3-4f1f-8d7e-f57be96ffa52_20220805_17 3227_966.jpg, 00:02:47, 35.90 m Connection other than junction at 12 o'clock, diameter: 150mm

16:14:0

MH4X_c62315f6-b43b-4b93-b076-27b8a2d1c621_20220805_ 173242_641.jpg, 00:02:55, 37.02 m Connection other than junction at 12 o'clock, diameter: 150mm

MH4X_aa8623a6-4cc7-4b5b-9792-67304da7b6f0_20220805_ 173322_595.jpg, 00:03:27, 46.69 m Broken pipe from 9 o'clock to 3 o'clock

MH4X_c982e121-5ee6-4a2f-a205-f978410f3d16_20220805_1 73403_908.jpg, 00:03:58, 54.20 m Finish node type, manhole, reference number: MH5

Section Inspection - 04/08/2022 - MH5X															
Section Inspection Date Time			e Cl	ient`s	Job Ref	Weath	er		Pre Cleaned			PLR			
6	6 1 04/08/22 14:50 Operator Vehicle				Camera Preset Length				Not Specified			N Alter	Alternative ID		
Not Specified Not Specified						Not S	pecified	Not Spec	ified		Not Specifie	, b	Not S	Speci	fied
Town or	Village:				Inspe	ectior	Direction:	Downstream		Upst	ream Node:		MH5		
Road:					Inspe	ected	Length:	33.60 m		Upst	ream Pipe D)epth:			
Location	า:				Total	Leng	gth:	33.60 m		Dow	nstream No	de:	MH6		
Surface	Туре:				Joint	Leng	gth:	0.00 m		Dow	nstream Pip	e Depth	า:		
Use:		S	urface wat	er				Pipe Shape:		Circu	ılar				
Type of	Pipe:							Dia/Height:		450 r	nm				
Year Co	nstructed	a:						Material:		Conc	rete				
Inspecti	on Purne	N60.						Lining Type:	al·		ining ining				
Comme	nts:							Linnig Materi	a.		ining				
Recomn	nendatio	ns:													
Scale:	1:293	Posit	ion [m]	Co	de Obs	serva	tion				r	I PEG	Photo	5	Grade
р	epth: m														
	мн5														
	\frown														
		0.0	00	М	H Sta	rt nod	e type, manł	nole, reference	number:	MH5	00):00:01			
	$\square \times$														
		0.0	00	W	L Wa	ter lev	vel, 5% of the	e vertical dimer	nsion		00):00:01			
		\													
		1.6	63	С	N Cor	Connection other than junction at 11 o'clock, diameter:							MH5X_	00	
					100	mm							ef02e1-	-d7 1₋0	
													ac-+0a-	7 0	
		10.0	20	0			on other they	iunation at 10	a'alaak	d: a ma a t	or: 0(MUEV	20	
	0	10.0	00	U	100	100mm								-bd	
													16-47c7	7-9	
	0	11.	C	N Cor 100	mecti	on other thar	n junction at 12	nction at 12 o clock, diameter:):00:56	3bcb6c-	9a -8a		
													19-4129	9-8	
		13.0	05	С	N Cor 100	necti mm	on other thar	n junction at 12 o clock, diameter:			er: 00):01:04	MH5X_2 3dd40-0	2†5)30	
		\backslash											8-4f60-a	98	
		\14.0)1	С	N Cor 100	Connection other than junction at 12 o'clock, diameter: 100mm):01:08	MH5X_0	c3e a3c	
													9-404c-	a9	
		33.6	60	MH	HF Fini	sh no	de type, mar	nhole, reference	e number	: MH6	00):02:11	MH5X_	6d	
													26-4e1	c-9	
	\bigcirc	33.0	<u> </u>	W	L Wa	ter lev	el, 5% of the	e vertical dimer	nsion		00):02:06			
_	MH6														
	epth: m														
Construction Features Miscellaneous Features															
STR No	Def S1	TR Peak	Structura	l Defect Mean	STR Tot	al	STR Grade	SER No. Def	Servi	ce & C eak	perational C	bservat	tions	SFP	Grade
0		0.0	0.	0	0.0		1.0	0	0.0	Jun	0.0).0		1.0

Boyne Waste Services

Rathdrinagh, Navan Tel. 0469024860 Info@boynewaste.ie

Section	Inspection Direction	PLR	Client`s Job Ref	Contractor`s Job Ref						
6	Downstream	MH5X								

MH5X_00ef02e1-d7ae-46a4-986d-423b8e6d8f3e_20220804_ 145955_364.jpg, 00:00:16, 1.63 m Connection other than junction at 11 o'clock, diameter: 100mm

MH5X_298aa1be-bd16-47c7-9377-e1a066887a31_20220804 _150035_500.jpg, 00:00:50, 10.68 m Connection other than junction at 12 o'clock, diameter: 100mm

MH5X_9a3bcb6c-8a19-4129-8283-d12bec9899ee_20220804 _150051_413.jpg, 00:00:56, 11.50 m Connection other than junction at 12 o'clock, diameter: 100mm

MH5X_2f53dd40-0308-4f60-a98e-8cc3040b2a7f_20220804_1 50106_148.jpg, 00:01:04, 13.05 m Connection other than junction at 12 o'clock, diameter: 100mm

14.01

MH5X_c3ea5c05-a3c9-404c-a91c-e7099bafd223_20220804_ 150118_331.jpg, 00:01:08, 14.01 m Connection other than junction at 12 o'clock, diameter: 100mm

-0.53 ° 13:42:58 2022-08-04

MH5X_6d89e4dd-bb26-4e1c-906e-07a0eba9e581_20220804 _150228_422.jpg, 00:02:11, 33.60 m Finish node type, manhole, reference number: MH6

-0.69 ° 13:44:08 2022-08-04

33.60 m

Rathdrinagh, Navan Tel. 0469024860 Info@boynewaste.ie

14:54:40

MH6X_a13bbe58-4804-48f6-a760-cd3fb3e73915_20220805_

161305_076.jpg, 00:00:43, 12.15 m Connection other than junction at 12 o'clock, diameter: 150mm

0.00

16.10

0.88 14:55:36 2022-08-05

MH6X_8e92713d-7006-4241-bd2f-b0ae56d4a3e7_20220805_

161401_064.jpg, 00:01:26, 16.10 m Finish node type, manhole, reference number: MH7

Boyne Waste Services Rathdrinagh, Navan Tel. 0469024860 Info@boynewaste.ie

		;	Sectio	n Ins _l	pection	- 04/08/2	2022 - I	MH8X			
Section	Inspecti	ion Date	Time	Clien	t`s Job Ref	Weath	er	Pre Cleaned		P	PLR
8 0r	1 Derator	04/08/22	15:34 icle	Not	Specified	Not Spec	nath	Not Specified		Altern	H8X hative ID
Not S	Specified	Not Sp	ecified	Not	Not Specified Not Specified Not			Not Specified		Not S	pecified
Town or	Village:			Inspecti	on Direction:	Downstream	U	pstream Node:		MH8	
Road:				Inspecte	ed Length:	29.04 m	U	pstream Pipe D	epth:		
Location):			Total Le	ngth:	29.04 m	D	ownstream Nod	le:	MH9	
Surface ⁻	Туре:			Joint Le	ngth:	0.00 m	D	ownstream Pipe	e Depti	h:	
Use:		Surface wat	er			Pipe Shape:	C	ircular			
Type of F	Pipe:					Dia/Height:	4	50 mm			
Year Cor	nstructed:					Material:	C	oncrete			
FIOW CO	ntroi: on Burnos/	. .				Lining Type:	- N	lo Lining			
Commen	nte.	ð				Lining Materi					
Recomm	nendations	:									
Scale:	1:253	Position [m]	Code	Observ	vation			Ν	IPEG	Photo	Grade
D	epth: m										
	MH8										
	\frown										
		0.00	МН	Start no	ode type, manh	ole. reference	number: MH	18 00	:00:01		
	\square				, , , , , , , , , , , , , , , , , , ,	,					
		< 0.00	\\/1	Water	evel 5% of the	vertical dimen	sion	00	.00.02		
	0	0.00		Water				00	.00.02		
		282	CN	Conner	ction other than	iunction at 12	o'clock dia	meter: 00	.00.22	мнах с)h
		2.02	ON	150mm		i juniciion at 12	o clock, ala	ineter. 00	.00.22	b48e7c-	6a
										ae-4410	-b
		11.79	WL	Water	evel, 20% of th	ne vertical dime	ension	00	:00:53		
		21.94	CN	Conno	ation other ther	iunation at 12	o'olook dio	motor: 00	.01.25		- 4
	0	21.04	CN	150mm	מוטרו טנוופו נוזמו ז	I junction at 12	U CIUCK, UIA	meter. 00	.01.55	369bac-	51
										d1-4a4a	-8f
		25.78	WL	Water	evel, 60% of th	ne vertical dime	ension	00	:02:01		
		20.03	\\/1	Water	level 40% of th	ne vertical dime	nsion	00	.02.45		
	Ц	29.03	VVL	Water	evel, 40 /0 01 li		151011	00	.02.45		
		20.04		Cini-L	odo trina	holo referrer	number N		.00.47	MUOY	20
		29.04	MHF	FINISN I	node type, mar	mole, reference	e number: N	ILA 00	.02:47	90f5ed-9	29 9d
D	פסth: m									5b-450f-	8d
		Constructio	n Features				M	iscellaneous Fea	tures	(****	
STR No	Def STR	Structura	I Detects Mean ST	R Total	STR Grade	SER No. Def	Service SER Peal	& Operational O	bserva SFR	tions	SER Grade
0	(0.0 0.	0	0.0	1.0	0	0.0	0.0		0.0	1.0

CELNRIDGE

MH8X_9bb48e7c-6aae-4410-b7f9-bf8978277f6b_20220805_1 51812_737.jpg, 00:00:22, 2.82 m Connection other than junction at 12 o'clock, diameter: 150mm

MH8X_54369bac-51d1-4a4a-8fae-aa22ed78e9c6_20220805 151939_572.jpg, 00:01:35, 21.84 m Connection other than junction at 12 o'clock, diameter: 150mm

MH8X_2990f5ed-9d5b-450f-8d1c-ecebac531aa9_20220805_ 152104_711.jpg, 00:02:47, 29.04 m Finish node type, manhole, reference number: MH9

Boyne Waste Services Rathdrinagh, Navan Tel. 0469024860 Info@boynewaste.ie

	Section Inspection - 05/08/2022 - MH9X														
Sectio	on Ins	spection	Date	Tim	e	Client	s Job Ref	Weath	er	F	Pre Cleane	d		PLR	
9	Dorote	1	05/08/2	2 12:0	3	Not S	Specified	Not Spec	ified	N	lot Specifie	d	Altor	/H9X	
No	t Speci	fied	Not	Specified		Not S	Specified	Not Spec	ified	N	lot Specifie	ed	Not S	Speci	ified
Town o	r Villa	ge:			In	spectio	on Direction:	Downstream		Upstr	eam Node	:	MH9		
Road:					In	specte	d Length:	21.14 m		Upstr	eam Pipe	Depth:			
Locatio	n:				То	otal Ler	ngth:	20.46 m		Down	stream No	de:	MH10)	
Surface	е Туре				Jo	oint Ler	ngth:	0.00 m		Down	stream Pi	pe Depti	า:		
Use:			Surface	water				Pipe Shape:		Circul	ar				
Type of	f Pipe:							Dia/Height:		450 m	nm				
Year Co	onstru	cted:						Material:		Concr	ete				
Flow C	ontrol:							Lining Type:		No Lir	ning				
Inspect	ion Pu	rpose:						Lining Materi	ial:	No Lir	ning				
Comme	ents: menda	tions:													
Scale:	1.17	78 Po	sition In	nl Co	ode (Ohserv	ation					MPFG	Phot	n	Grade
			Shion [n			003014							THOU	0	Grade
	MH9	m													
	\frown	\ \	0.00	0		•	C d d					0 00 04			
()	0.68	C	N C	Connec 150mm	tion other thar	1 junction at 12	O'CIOCK, C	liamete	er: 0	0:00:24	eb9941	.55 -6e	
	\mathbf{H}												de-49a	7-9	
		$\backslash \sim$	0.00	M	H S	Start no	de type, manh	nole, reference	number: I	MH8	0	0:00:06			
			0.00	V	/L \	Water le	evel, 5% of the	e vertical dimer	nsion		0	0:00:06			
¥			9.88	DI	EC s	Settled area los	deposits, hard ss	l or compacted	, 10% cros	ss-sect	tional 0	0:01:22	MH9X_ 7e869a 78-474	.78 -83 9-a	3
	0	1	2.89	С	N (Connec 150mm	tion other thar	n junction at 12	o'clock, c	liamete	ər: O	0:01:58	MH9X_1 f4b2d-1 -40b8-b	9ec af4 006	
(MH10 Depth:	2 2 m	0.46	MI	HF F /L \	Finish n Water le	ode type, mar evel, 50% of th	nhole, reference	e number: ension	MH9	0	0:02:57 0:02:56	MH9X_ 71765-3 4-4345- MH9X_ d419d6 e4-419a	bef 306 -a1 _91 -71 a-9	
			Constru	ction Featu	ures					Miscel	laneous Fe	atures			
STR M	Def	STR Po	Struct	tural Defec	IS STR 1	Total	STR Grade	SER No. Def	Servio	ce & Op	perational (Observa	Total	SEE	Grado
0		0.0		0.0	0.0	0	1.0	1	2.0		0.0		2.0		3.0

OYNE **Boyne Waste Services** В Rathdrinagh, Navan Tel. 0469024860 WASTE SERVICES Info@boynewaste.ie Section Pictures - 05/08/2022 - MH9X PLR Inspection Direction Client's Job Ref Section Contractor's Job Ref MH9X 9 Downstream Concret 2.27 ° 13:26:21 2022-08

MH9X_55eb9941-6ede-49a7-9ce2-b5dd9289a6e8_20220805 _144337_418.jpg, 00:00:24, -0.68 m Connection other than junction at 12 o'clock, diameter: 150mm

MH9X_787e869a-8378-4749-a37d-4b26b602aa63_20220805 _144445_918.jpg, 00:01:22, 9.88 m Settled deposits, hard or compacted, 10% cross-sectional area loss

MH9X_9ecf4b2d-1af4-40b8-b06e-abfc7873eb98_20220805_1 44532_231.jpg, 00:01:58, 12.89 m Connection other than junction at 12 o'clock, diameter: 150mm

MH9X_bef71765-3064-4345-a152-cb3d374b75d8_20220805_ 144648_586.jpg, 00:02:57, 20.46 m Finish node type, manhole, reference number: MH9

Boyne Waste Services

Rathdrinagh, Navan Tel. 0469024860

newaste.ie

VASTE SERVICI	=5			Into@boynewaste					
Section Pictures - 05/08/2022 - MH9X									
Section 9	Inspection Direction Downstream	PLR MH9X	Client`s Job Ref	Contractor`s Job Ref					

MH9X_91d419d6-71e4-419a-9e57-8c79d224374a_20220805 _144643_656.jpg, 00:02:56, 20.46 m Water level, 50% of the vertical dimension

Boyne Waste Services Rathdrinagh, Navan Tel. 0469024860 Info@boynewaste.ie

			Sectio	n Insp	pection	- 05/08/2	2022 -	MH7)	(
Sectio	n Inspect	tion Date	Time	Client	`s Job Ref	Weath	er	Pre C	leaned		Р	LR	
10		05/08/22	16:14	Not	Specified	Not Spec	ified	Not S	pecified	_	M		
Not	Specified	Not Sp	pecified	Not	Specified	Not Spec	ified	Not S	pecified		Not S	becif	ied
Town o	r Village:			Inspection	on Direction:	Downstream		Upstream	Node:		MH7		
Road:				Inspecte	d Length:	32.59 m		Upstream	Pipe Dep	th:			
Locatio	n:			Total Le	ngth:	32.59 m		Downstre	am Node:		MH8		
Surface	e Type:			Joint Le	ngth:	0.00 m		Downstre	am Pipe [Depth	า:		
Use:		Surface wa	ter			Pipe Shape:		Circular					
Type of	Pipe:					Dia/Height:		450 mm					
Year Co	onstructed:					Material:		Concrete					
Flow Co	ontrol:					Lining Type:		No Lining					
Inspect	ion Purpos	e:				Lining Materi	ial:	No Lining					
Comme	ents:												
Recom	mendations	S:											
Scale:	1:284	Position [m]	Code	Observ	ation				MP	EG	Photo	(Grade
[Depth: m												
	MH7												
	\checkmark	0.00	MH	Start no	ode type, manh	nole, reference	number: N	1H7	00:00	0:01			
		0.00	WL	Water I	evel. 5% of the	e vertical dimen	nsion		00:00):02			
					,								
		E 74	CN	Connor	tion other ther	iunation at 12	o'olook di	omotor	00.0).9E		5 0	
	0	5.74	CN	150mm	suon other than	I junction at 12	O CIOCK, OI	ameter	00:00	J.25	40791-4	52 51	
											2-47cd-8	6	
\$	-7	24.95	CN	Connec 150mm	tion other thar	n junction at 11	o'clock, di	ameter:	00:0	1:44	MH7X_7 a1a7cf-8 ab-4d9b-	6 0 a	
) [MH8 Depth: m	32.59 32.59 Constructio	WL MHF	Water I Finish r	evel, 5% of the	e vertical dimen	nsion e number:	MH8 discellane	00:0; 00:0;	2:13 2:16 res	MH7X_5 041a47- aa-4b3f-b	8 fa od	
		Structura	I Defects				Servic	e & Opera	tional Obs	ervat	tions		
STR No	. Def ST	R Peak STR	Mean ST	R Total	STR Grade	SER No. Def	SER Pea	ak SER	Mean	SER	Total	SER	Grade
0		0.0 0	.0	0.0	1.0	0	0.0	().0	().0		1.0

MH7X_f8240791-4512-47cd-8631-766719a8df01_20220805_ 163057_381.jpg, 00:00:25, 5.74 m Connection other than junction at 12 o'clock, diameter: 150mm

7X_76a1a7cf-80ab-4d9b-a6c7-ca2d42bbfd2d_20220805 MH. 164623_993.jpg, 00:01:44, 24.95 m Connection other than junction at 11 o'clock, diameter: 150mm

MH7X_58041a47-faaa-4b3f-bdfc-3aee8cd1e9f3_20220805_1 64706_089.jpg, 00:02:16, 32.59 m Finish node type, manhole, reference number: MH8

Notes:

Thank you for choosing to use WinCan to carry out your drainage investigation works.

The results and views carried in this report are those of the engineer(s) appointed to carry out the investigation and are considered relevant on the day of the survey. Drain and sewer performance is known to alter over time, so liability cannot be accepted for differences between the recorded data and the actual data at a time after this report was generated.

This survey has been created in accordance with the drainage standard used in the country and language settings for this PC.

If a DVD has been supplied with this report, please not that it can only be used in a Windows based PC. Please browse the DVD and navigate to the PDF folder to find project-based documents such as drawings, engineer's site notes and survey specifications amongst others.

CCTV subsidence investigations do not account for the water tightness of the pipes and are merely a visual inspection of inside of the drains. CCTV drainage engineers are generally not qualified to comment on the causes of subsidence, and can only suggest required remedial actions for the pipes, and not the affected buildings.

Subsidence is a building structural failure, which can occur for many reasons. Although drainage failures can contribute to subsidence problems, other causes should always be investigated as part of a considered approach. In order to eliminate drains from suspicion, WinCan suggests that all pipes within at least 10m of the subsidence area be pressure tested over and above a CCTV inspection, and remedial suggestions considered based on the findings.

Unless otherwise specified in an associated task order (or similar), the data gathered in this report may not be suitable for use as a pre-lining investigation. WinCan are happy to carry out such surveys, but this must be agreed prior to the commencement of the works, and a the client must specify the data they wish to capture and the acceptable tolerances.

Where GPS coordinates and heights have been issued within this report, they are to 1m accuracy, and 2m accuracy for heights. Greater accuracy can be provided on request.

